МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК

Том 1. Физика

Сборник научных трудов XIX Международной конференции студентов, аспирантов и молодых ученых

26-29 апреля 2022 г.

PROSPECTS OF FUNDAMENTAL SCIENCES DEVELOPMENT

Volume 1. Physics

Abstracts XIX International Conference of students, graduate students and young scientists

April 26–29, 2022

Томский государственный университет

систем управления и радиоэлектроники

Томск 2022

Перспективы развития фундаментальных наук : сборник трудов XIX Меж-П27 дународной конференции студентов, аспирантов и молодых ученых (Томск, 26–29 апреля 2022 г.) : в 7 томах. Том 1. Физика / под ред. И.А. Курзиной, Г.А. Вороновой. – Томск : Изд-во Томского политехнического университета, 2022. – 218 с.

ISBN 978-5-4387-1082-0 (т. 1) ISBN 978-5-4387-1081-3

Сборник содержит труды участников XIX Международной конференции студентов, аспирантов и молодых учёных «Перспективы развития фундаментальных наук», представленные на секции «Физика».

Предназначен для студентов, аспирантов, молодых ученых и преподавателей, специализирующихся в области физики конденсированного состояния, физики поверхности, физики ускорителей, водородной энергетики, геофизики, а также моделирования физических процессов.

> УДК 501:004(063) ББК 72:32.81л0

Редакционная коллегия

И.А. Курзина, доктор физико-математических наук, доцент;

Г.А. Воронова, кандидат химических наук, доцент;

С.А. Поробова.

ISBN 978-5-4387-1082-0 (т. 1) ISBN 978-5-4387-1081-3 \odot ФГАОУ ВО НИ ТПУ, 2022

Tomsk International Science Program (TISP) «Molecular engineering»

The program is related to biological systems engineering. With the application of the concepts and methods of biology (and, secondly, physics, chemistry, mathematics and computer science) to solve actual problems related to the sciences of living organisms or their applications, using analytical and synthetic methodologies of engineering. Biological engineering mainly uses the rapidly developing field of molecular biology and chemoinformatics to study and develop the applications of living organisms.

Studying under this educational program is carried out in the form of full-time studying, including online studying and distance learning technologies. The program is based on problem-based learning (PBL) approach, which is more effective than traditional way of education. Students will actively acquire knowledge and skills needed for your career prospects, your future. With PBL, students are solving complex, interdisciplinary and real-life academic problems.

Full-time form of education

Duration of study - 4 years

Areas of professional activity: healthcare, food industry, chemical, chemical-technological production, cross-cutting professional activities in industry

Study language - English

Tuition fees: 289,510 rubles a year

Admission exams: 2 exams, of which mathematics (mandatory) and a choice of chemistry, physics or computer science. Taking exams online from January to August 2022

Program Application Deadlines: January 10 -August 20, 2022. Application Link https://admissions.tsu.ru/

Objective of the program: Training of a specialist in the field of molecular engineering, capable of conducting applied research focused on development for a specific task of the enterprise. The program is aimed at training specialists with good mathematical, chemical, biological and IT fundamental background.

Basic disciplines: chemistry, biology, bioinformatics, biochemistry, mathematics, computer science and basic programming, metabolomics, organic synthesis, biomaterials science, applied medical biotechnology, large workshop on medical biotechnology.

objects of professional activity The graduates are: microorganisms, cellular structures of animals and plants, viruses, enzymes, biologically active chemicals; devices and equipment for studying the properties of used microorganisms, cellular structures and substances obtained with their help in laboratory and industrial conditions; plants and equipment for biotechnological processes; means of quality control of raw materials, semi-finished products and finished products. The field of activity of graduates extends from the creation of artificial organs using technical means or the search for ways to grow organs and tissues using regenerative medicine methods to compensate for reduced or lost physiological functions (biomedical engineering) and to the development of genetically modified organisms, for example, agricultural plants and animals (genetic engineering), as well as molecular design of compounds with desired properties (chemoinformatics, protein engineering, engineering enzymology).

Places for internships for students and subsequent employment of graduates:

Pharmaceutical companies, biotechnology companies, Research Medical Centers, scientific laboratories. Graduates of the undergraduate program can continue their studies at the master's program at TSU or other universities. From the 4th year there is a selection for the double degree program (TSU-France, ParisTech University) «Translational chemical and biomedical technologies» of the master's level.

tisp_tsu

tsuTISP

tisp.tsu.ru/apply/

АВТОНОМНАЯ МАГИСТЕРСКАЯ ПРОГРАММА «ТРАНСЛЯЦИОННЫЕ ХИМИЧЕСКИЕ И БИОМЕДИЦИНСКИЕ ТЕХНОЛОГИИ»

Молекулярные методы

Основы биоинформатики

Молекулярная онкология

в биомелицинских исследованиях

биоинформатика

Прикладная

• стажировки в ведущих мировых

• диплом международного уровня

• освоение полного цикла получения

• работа с новыми технологиями

продукта: синтез-исследование,

доклинические исследования,

сертификация, маркетинг

университетах

Направление подготовки Факультет Форма обучения Продолжительность программы Язык обучения Бюджетные места

Условия приёма

Приём на первый курс магистратуры проводится на конкурсной основе по заявлениям лиц, имеющих высшее образование. Победители и призеры олимпиад «Магистр TГУ», «Химия биотехнологий», «Я - профессионал» имеют возможность получить максимальный балл за вступительный экзамен.

Химия

2 года

Русский 20

Химический факультет

Смешанный формат обучения

Вступительные испытания: экзамен по химии, собеседование.

Магистерская программа включает возможность обучения по программе двойного диплома совместно с университетом Chimie ParisTech (Франция). За период обучения по одной программе магистратуры можно получить дипломы двух Университетов, углублено освоить курсы химической технологии и инженерии материалов.

КЛЮЧЕВЫЕ ДИСЦИПЛИНЫ ПРОГРАММЫ

Основы общей иммунологии

Основы клеточной

Введение в медицинскую биологическую химию Химические технологии в медицине

и диагностики клеточных Биоматериаловедение

Физико-химические методы анализа органических соединений и фармацевтических субстанций

Магистратура «Трансляционные химические и биомедицинские технологии» это:

биологии

систем

• междисциплинарные знания на стыке химии, биологии, фармакологии, клеточной и молекулярной биомедицины

• компетенции по проведению доклинических и клинических испытаний. разработка технологического регламента, сертификации, маркетингу и малотоннажному производству

продукта

КОНТАКТЫ

Solagíft

Менеджер программы: Шаповалова Елена, +7 (953) 928 15 49, egshapovalova@yandex.ru Заявки оставляйте на сайте: chembiomed.ru или через telegram-бота @smti_tsu_bot

chembiomed.ru 💘 chembiomed

факультет

САЕ Институт «Умные

материалы и технологии»

ПРЕИМУЩЕСТВА ПРОГРАММЫ

- ow Обучение на базе научных центров ТГУ и Томского НИЦМ, университетов Гейдельберга и Мюнстера (Германия)
- Ведущие зарубежные и российские специалисты
- Индивидуальная образовательная يگ траектория
- Более 30% учебных дисциплин Ó составляют курсы по выбору
- Виртуальные лаборатории Labster (Технический университет Дании)
- 2,

ВЕДУЩИЕ ПРЕПОДАВАТЕЛИ урзина Ирина Александро

Курзина Ирина Алекскандровна Руковадитель вигистерской программы: д.ф.м.н., доцент, заведующая базовой кафедрой природных соединений, фармацетической и медицинской химии XD TY3 жа. заведующего пабораторией трансляционной китечной и молекупярной биомедицины, HV TTУ, Tonck, Россия. Кжышковска Юлия Георги

Кижшиковска Юлии Георгиевна Соруководитель магистерской программы; д.б.н., профессор, зав. лабораторией транспяционной клеточной и молекулярной биомедицины. Университет Гейдельберга; Медицинский факультет. Заведующая Отделом Врожденного Имириитета и Имириопотической Толерантности Иститута Трансфизионой Медицины Иктитута Трансфизионой Медицины

Рисса консслав сыперения дама, заместитель директора по научной и лечебной работе НИИ кардиологии Конского НИИИ, и.о. руководителя отделения неотложной кардиологии, пофессор кафедры кардиологии ОПК и ППС сибГМУ, в.н.с. лаборатории транспликонной и клеточной биомедицины НИ ТГУ.

Чурина Елена Георгиевна

д.м.н., профессор кафедры органической химии ХФ ТГУ, врач органической лимии до 17, врач иммунолог-аллерголог, профессор кафедры патофизиологии СибГМУ, член российской ассоциации аллергологов и клинических иммунологов, Томск,

Хайнрих Лотар Альфред

Хайнрих Лотар Алеут Д.Х.н., в.н.с. лаборатории Транслационой клеточной и молекулярной биомедицины НИ ПТУ, Томск, Россия Рresident of marcotech oHG, Honorary professor of the Westphalian Wilhiems University, Muenster Руководитель блока инневационных материалов для

Лаборат физико-

СОРБЕНТЫ • ТЕХНОЛОГИЯ ПРОИЗВОДСТВА • НАНОСТРУКТУРНЫЕ КАТАЛИЗАТОРЫ ХИМИЧЕСКИЕ ПРОЦЕССЫ • НОВЫЕ ТИПЫ МАТЕРИАЛОВ ЭЛЕКТРОННЫЙ УЧЕБНЫЙ КУРС • ВИРТУАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

Дополнительная профессиональная образовательная программа профессиональной переподготовки по теме

«МЕТОДЫ РАЗРАБОТКИ И ТЕХНОЛОГИИ ПРОИЗВОДСТВА ПЕРСПЕКТИВНЫХ НАНОСТРУКТУРНЫХ КАТАЛИЗАТОРОВ И СОРБЕНТОВ ДЛЯ НЕФТЕХИМИЧЕСКОГО ПРОИЗВОДСТВА»

- Основана на компетентностном подходе
- Использует вариативно-модульный принцип построения
- образовательного процесса
- Выбор модуля обеспечивает формирование требуемых
- профессиональных компетенций
- Содержание программы разработано в соответствии с потребностями предприятий-производителей катализаторов и сорбентов.

САЕ Институт «Умные материалы и технологии»

г. Томск

ФОНД ИНФРАСТРУКТУР И ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ

Руководитель программы: **Курзина Ирина Александровна** Kurzina99@mail.ru

Томский государственный университет САЕ Институт «Умные материалы и технологии» г. Томск, пр. Ленина, 36

СОДЕРЖАНИЕ

КОРРОЗИОННАЯ СТОЙКОСТЬ ЦИРКОНИЕВОГО СПЛАВА ZR-1NB С СR/МО ПОКРЫТИЕМ ПРИ ВЫСОКОТЕМПЕРАТУРНОМ ОКИСЛЕНИИ А.В. Абдульменова, М.С. Сыртанов	11
ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ СТРУКТУРЫ КАЛЬЦИЙ-ФОСФАТНЫХ ПОКРЫТИЙ ПРИ ВЫСОКИХ НАПРЯЖЕНИЯХ ПРОЦЕССА МИКРОДУГОВОГО ОКСИДИРОВАНИЯ Е.Б. Акимова, Е.А. Казанцева	14
МОДЕЛИРОВАНИЕ МАГНИТНОГО ПОЛЯ МАГНЕТРОННОЙ РАСПЫЛИТЕЛЬНОЙ СИСТЕМЫ С ПЛОСКИМ КАТОДОМ В.Е. Анорин	17
ЭЛЕКТРОННО-ПУЧКОВАЯ ОБРАБОТКА ПОРОШКОВОГО СПЛАВА ТІМ Н.В. Артюхова, С.Г. Аникеев, М.И. Кафтаранова	20
МОРФОЛОГИЯ И ТОПОГРАФИЧЕСКИЕ ПАРАМЕТРЫ ПОВЕРХНОСТИ TI-NI-NB И TI-NI-NB-SI СПЛАВОВ, СИНТЕЗИРОВАННЫХ НА ТINI-ПОДЛОЖКЕ А.А. Атовуллаева, Ф.А. Дьяченко	23
ПРИМЕНЕНИЕ ПАКЕТА GEANT4 ДЛЯ МОДЕЛИРОВАНИЯ РАДИАЦИОННЫХ ДОЗ ПРИ РАБОТЕ СИЛЬНО-ТОЧНОГО ИМПУЛЬСНО-ПЕРИОДИЧЕСКОГО УСКОРИТЕЛЯ ЭЛЕКТРОНОВ К.В. Афанасьев, А.Н. Синяков, Р.В. Цыганков	26
ПАРАМЕТРЫ ТЕТРАХИРАЛЬНОЙ СТРУКТУРЫ КАК ФАКТОР ПРОГРАММИРУЕМОСТИ МЕХАНИЧЕСКОГО ПОВЕДЕНИЯ МЕТАМАТЕРИАЛА Л.Р. Ахметшин, Р.Т. Мухтаров	29
ВЛИЯНИЕ ТЕРМООБРАБОТОК НА МАРТЕНСИТНЫЕ ПРЕВРАЩЕНИЯ И МЕХАНИЧЕСКИЕ СВОЙСТВА ТОНКОСТЕННЫХ ТРУБОК ИЗ НАНОКРИСТАЛЛИЧЕСКОГО СПЛАВА TINI С.М. Биттер, К.А. Жеронкина	32
ОСАЖДЕНИЕ ХРОМОВЫХ ПОКРЫТИЙ С ПОМОЩЬЮ МАГНЕТРОННОГО РАСПЫЛЕНИЯ «ГОРЯЧЕЙ» МИШЕНИ С АССИСТИРОВАНИЕМ ВНЕШНИМ ПЛАЗМЕННЫМ ИСТОЧНИКОМ А.А. Бондарь, В.А. Грудинин, Д.В. Сиделёв	35
СВОЙСТВА ПОКРЫТИЙ, СФОРМИРОВАННЫХ РЕАКТИВНЫМ ВЧ РАСПЫЛЕНИЕМ ГИДРОКСИАПАТИТА В СМЕСИ АЗОТА И ИНЕРТНЫХ ГАЗОВ В.Р. Букал, А.Ю. Федоткин	38
НЕКОГЕРЕНТНОЕ ФОТОРОЖДЕНИЕ НЕЙТРАЛЬНОГО ПИ-МЕЗОНА НА ДЕЙТРОНЕ НА ВЭПП-3 Б.И. Василищин, М.Я. Кузин	41
ОСОБЕННОСТИ МИКРОСТРУКТУРЫ, ФАЗОВОГО И ЭЛЕМЕНТНОГО СОСТАВА СПЛАВА ТІ-NB-ZR-TA, ИЗГОТОВЛЕННОГО МЕТОДОМ ЭЛЕКТРОННО-ЛУЧЕВОГО ПЛАВЛЕНИЯ	14
А.П. БОЛКОВА, Д. АРАПОВ, И.Ю. ГРУООВА ОСАЖДЕНИЕ ПЛЁНОК ОКСИДА МЕДИ ПРИ МАГНЕТРОННОМ РАСПЫЛЕНИИ В МЕТАЛЛИЧЕСКОМ РЕЖИМЕ	44
Е.Д. Воронина, Д.В. Сиделёв	47
ВЛИЯНИЕ ДЛИТЕЛЬНОСТИ АЗОТИРОВАНИЯ НА СТРУКТУРНЫЕ И ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА СТАЛИ 40X13 ПРИ ДУПЛЕКСНОЙ ОБРАБОТКЕ Е.Д. Воронина	50
УСТАНОВКА ДЛЯ ОПТИЧЕСКОЙ СПЕКТРОСКОПИИ ВАН-ДЕР-ВААЛЬСОВЫХ ГЕТЕРОСТРУКТУР С ПРОСТРАНСТВЕННЫМ РАЗРЕШЕНИЕМ А.А. Галиуллин, М.В. Кравцов, Н.К. Журбина	53
ВЛИЯНИЕ ПАРАМЕТРОВ МАГНЕТРОННОГО РАСПЫЛЕНИЯ НА МИКРОСТРУКТУРУ И МЕХАНИЧЕСКИЕ СВОЙСТВА ПОКРЫТИЙ Ti-Al-Ta-N Ю.А. Гаранин, Е.Д. Кузьминов	56
ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ ПРОВОЛОЧНОЙ ЭЛЕКТРОННО-ЛУЧЕВОЙ АДДИТИВНОЙ ТЕХНОЛОГИИ ДЛЯ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ НИКЕЛЕВЫХ СПЛАВОВ Д.А. Гурьянов, Е.О. Княжев, А.О. Панфилов1	59

КОРРОЗИОННОЕ ПОВЕДЕНИЕ СВАРНЫХ СОЕДИНЕНИЙ ИЗ ЦИРКОНИЕВОГО СПЛАВА Э110 С ЗАЩИТНЫМ ХРОМОВЫМ ПОКРЫТИЕМ К.С. Гусев, С.Н. Кутылев, Д.А. Ашихмин	62
МЕХАНИЧЕСКИЕ СВОЙСТВА КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ АЛЮМИНИЕВО-КРЕМНИЕВОГО СПЛАВА АК5 И НИКЕЛЕВОГО СПЛАВА UDIMET-500, ПОЛУЧЕННОГО МЕТОДОМ ЭЛЕКТРОННО-ЛУЧЕВОГО АДДИТИВНОГО ПРОИЗВОДСТВА А.Р. Лобровольский А.В. Чумаевский	65
ВЛИЯНИЕ ТЕМПЕРАТУРЫ ОТЖИГА НА МАРТЕНСИТНЫЕ ПРЕВРАЩЕНИЯ И МЕХАНИЧЕСКИЕ СВОЙСТВА ПОРИСТОГО NITI К.М. Дубовиков, А.В. Ветрова, М.А. Ковалева	68
ВЛИЯНИЕ СТРУКТУРЫ НА ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ПОВЕРХНОСТНЫХ Ті-Ni-Ta СПЛАВОВ, СИНТЕЗИРОВАННЫХ НА ТINI-ПОДЛОЖКЕ ЭЛЕКТРОННО-ПУЧКОВЫМ СПОСОБОМ	71
Ф.А. дыяченко, А.А. Аговуллаева ИССЛЕДОВАНИЕ МИКРОПОРИСТОЙ КЕРАМИКИ AL ₂ O ₃ , ПОЛУЧЕННОЙ ИСКРОВЫМ ПЛАЗМЕННЫМ СПЕКАНИЕМ ПРЕКЕРАМИЧЕСКИХ БУМАГ А.К. Дюсамбаев, М.Г. Криницын	71
СИНТЕЗ МАТЕРИАЛА-НАКОПИТЕЛЯ ВОДОРОДА ТІ _{21,5} V ₄₀ CR _{38,5} МЕТОДОМ ПЛАВЛЕНИЯ В ПЛАЗМЕ АНОМАЛЬНОГО ТЛЕЮЩЕГО РАЗРЯДА А.Е. Жданов, Т.Л. Мурашкина	77
ОРИЕНТАЦИОННАЯ ЗАВИСИМОСТЬ ПАРАМЕТРОВ ПОВЕРХНОСТНОГО УПРОЧНЕННОГО СЛОЯ, СФОРМИРОВАННОГО В МОНОКРИСТАЛЛАХ АУСТЕНИТНОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ ПРИ ИОННО-ПЛАЗМЕННОМ ВОЗДЕЙСТВИИ Е.А. Загибалова, В.А. Москвина, А.С. Нифонтов	80
ВЛИЯНИЕ ДЛИТЕЛЬНОСТИ МИКРОДУГОВОГО ОКСИДИРОВАНИЯ НА МОРФОЛОГИЮ И СТРУКТУРУ КАЛЬЦИЙ-ФОСФАТНЫХ ПОКРЫТИЙ Е.А. Казанцева, Е.Б. Акимова, Е.Г. Комарова	83
СТРУКТУРНЫЕ И МОРФОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОРИСТЫХ МАТЕРИАЛОВ TINI-TI-CO М.И. Кафтаранова, С.Г. Аникеев, В.Н. Ходоренко	86
ФОРМИРОВАНИЕ ЛАМИНИРОВАННЫХ КОМПОЗИТОВ Nb/TI ₃ Al(Si)C ₂ -TiC МЕТОДОМ ИСКРОВОГО ПЛАЗМЕННОГО СПЕКАНИЯ Е.Б. Кашкаров, А.В. Абдульменова	89
ЭВОЛЮЦИЯ ЗЕРЕННОЙ СТРУКТУРЫ АУСТЕНИТНОЙ СТАЛИ ЭК-164 В РЕЗУЛЬТАТЕ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ А.В. Ким, С.А. Аккузин	92
ОРГАНИЗАЦИЯ СТРУКТУРЫ АЛЮМИНИЕВОГО СПЛАВА АМг5 ПРИ МОДИФИКАЦИИ ПОРОШКОМ ЖЕЛЕЗА МЕТОДОМ ФРИКЦИОННОЙ ПЕРЕМЕШИВАЮЩЕЙ ОБРАБОТКИ Е.О. Княжев, Т.А. Калашникова, А.В. Чумаевский	95
ВЛИЯНИЕ ТОЛЩИНЫ ПРОВОЛОКИ ИЗ НИКЕЛИДА ТИТАНА НА ЕЕ МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ М.А. Ковалёва, А.В. Ветрова, А.А. Шишелова	98
ОБРАБОТКА ВОЛЬФРАМОВОГО КОНЦЕНТРАТА РУДЫ В ПЛАЗМЕ ДУГОВОГО РАЗРЯДА ПОСТОЯННОГО ТОКА А.И. Кокорина	101
РАЗРАБОТКА УСТАНОВКИ ДЛЯ ИССЛЕДОВАНИЯ ГАЗОПРОНИЦАЕМОСТИ М. Копцев, А. Дюсамбаев	104
ВЛИЯНИЕ ВОДОРОДА НА СТРУКТУРНО-ФАЗОВОЕ СОСТОЯНИЕ И МЕХАНИЧЕСКИЕ СВОЙСТВА ЦИРКОНИЕВОГО СПЛАВА ZR-2.5NB М.А. Кругляков	107
ОЦЕНКА ВКЛАДА ПРОДОЛЬНОЙ ПОЛЯРИЗАЦИИ ФОТОНОВ ДЛЯ ЭКСПЕРИМЕНТА «ДЕЙТРОН» М.Я. Кузин, А.Ю. Логинов	110

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЛЕГИРОВАНИЯ ТА И МНОГОСЛОЙНОЙ АРХИТЕКТУРЫ ПОКРЫТИЙ НА ОСНОВЕ СИСТЕМЫ TI-AL-N НА ИХ ДЕФОРМАЦИЮ И РАЗРУШЕНИЕ ПРИ СКРЕТЧ-ТЕСТИРОВАНИИ И ОДНООСНОМ РАСТЯЖЕНИИ	
Е.Д. Кузьминов, Ю.А. Гаранин РАЗРАБОТКА МОДЕЛЕЙ В CST STUDIO SUITE ДЛЯ МОДЕЛИРОВАНИЯ	113
ПОЛЯРИЗАЦИОННОГО ИЗЛУЧЕНИЯ М.А. Лаппо, Н.С. Бердников, Д.А. Шкитов	116
ВЛИЯНИЕ РЕЖИМОВ ОБРАБОТКИ НА ЗЕРЕННУЮ СТРУКТУРУ ФЕРРИТНО- МАРТЕНСИТНОЙ СТАЛИ ЭП-823 В.В. Линник	110
МИКРОСТРУКТУРА И ФАЗОВЫЙ СОСТАВ ИЗДЕЛИЙ ИЗ ТИТАНОВОГО СПЛАВА ВТ14, ПОЛУЧЕННЫХ ПРОКАТКОЙ И МЕТОДОМ ЭЛЕКТРОННО-ЛУЧЕВОЙ ПРОВОЛОЧНОЙ АДДИТИВНОЙ ТЕХНОЛОГИИ Т.А. Лобова, С.А. Мартынов	122
CHARACTERISTICS OF THE ANNIHILATION OF POSITRONS IN NANOSIZED METAL COATINGS ZR/NB AFTER HE+ ION IRRADIATION A.D. Lomygin1, D.G. Krotkevich1, M.O. Liedke2	125
PERMEABILITY OF THE POROUS TITANIUM NICKELIDE BASED ALLOYS WITH TITANIUM ADDITIONS PRODUCED BY THE DIFFUSION SINTERING METHOD O. Mamazakirov, S.G. Anikeev, N.V. Artyukhova	128
ВЛИЯНИЯ ТИПА РЕАКТОРА НА СТРУКТУРНЫЕ ОСОБЕННОСТИ НИКЕЛИДА ТИТАНА, ПОЛУЧЕННОГО МЕТОДОМ СВС В АТМОСФЕРЕ АРГОНА О. Мамазакиров, А. С. Гарин, В. В. Титова	131
ПОЛУЧЕНИЕ ГРАДИЕНТНЫХ ПОРИСТЫХ МАТЕРИАЛОВ НА ОСНОВЕ МАХ-ФАЗ ИЗ ПРЕКЕРАМИЧЕСКИХ БУМАГ Ю.Р. Мингазова	134
ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ ПОЛИМЕТАЛЛОВ ВТ6/СU С РАЗЛИЧНЫМ СОДЕРЖАНИЕМ МЕДИ, ИЗГОТОВЛЕННЫХ ЭЛЕКТРОННО-ЛУЧЕВОЙ ПРОВОЛОЧНОЙ АДДИТИВНОЙ ТЕХНОЛОГИЕЙ	
А.В. Николаева, А.В. Чумаевский, А. В. Воронцов Зависимость размера зерна от температуры отжига сплава вт1-0 после	137
АВС-ПРЕССОВАНИЯ А.В. Никоненко, Н.А. Попова, Е.Л. Никоненко	140
ФАЗОВЫЙ СОСТАВ ЖАРОПРОЧНОГО СПЛАВА ПОСЛЕ ПОЛЗУЧЕСТИ ПРИ ИЗМЕНЕНИИ ХИМИЧЕСКОГО СОСТАВА	
А.В. Никоненко, Н.А. Попова, Е.Л. Никоненко	143
ВЛИЯНИЕ ДИСПЕРСНЫХ ЧАСТИЦ НА ЗАКОНОМЕРНОСТИ ВОДОРОДНОГО ОХРУПЧИВАНИЯ ВЫСОКОЭНТРОПИЙНОГО СПЛАВА КАНТОРА А.С. Нифонтов, М.Ю. Панченко, Е.А. Загибалова	146
ОСОБЕННОСТИ ОБРАЗОВАНИЯ КОМПЛЕКСА ИЗ ВАКАНСИИ И СМЕЩЕННОГО АТОМА В АЛЬФА ЦИРКОНИИ	140
МЕХАНИЧЕСКИЕ СВОЙСТВА И ТРИБОЛОГИЧЕСКОЕ ПОВЕДЕНИЕ ПОЛИМЕТАЛЛИЧЕСКИХ ОБРАЗЦОВ СИСТЕМЫ СU-FE, ПОЛУЧЕННЫХ МЕТОДОМ ДВУХПРОВОЛОЧНОЙ ПОДАЧИ ПРИ ЭЛЕКТРОННО-ЛУЧЕВОЙ АДДИТИВНОЙ 3D-ПЕЧАТИ С РЕГУЛИРОВАНИЕМ СОЛЕРЖАНИЯ СТАЛИ В СИСТЕМЕ	149
К.С. Осипович, А.В. Чумаевский, Е.О. Княжев	152
МИКРОСТРУКТУРА И МЕХАНИЧЕСКИЕ СВОЙСТВА КОМПОЗИТОВ БрАМц9-2/10Х18Н10Т, ПОЛУЧЕННЫХ ЭЛЕКТРОННО-ЛУЧЕВОЙ АДДИТИВНОЙ ТЕХНОЛОГИЕЙ С РАЗЛИЧНОЙ КОНЦЕНТРАЦИЕЙ 10Х18Н10Т	
А.О. Панфилов, А.В. Чумаевский, Д.А. Гурьянов	155

СВЕТОИНДУЦИРОВАННАЯ ГЕНЕРАЦИЯ СТАТИЧЕСКИХ И ДИНАМИЧЕСКИХ СУПРАМОЛЕКУЛЯРНЫХ СТРУКТУР В СВЕТОЧУВСТВИТЕЛЬНЫХ ХИРАЛЬНЫХ ЖИДКИХ КРИСТАЛЛАХ	
А.О. Пивень, Д.Д. Дармороз, П.И. Зырянова	158
ЗАЩИТНОЕ ТІС ПОКРЫТИЕ ДЛЯ ПОГЛОЩАЮЩИХ ЭЛЕМЕНТОВ ИЗ HfH _x А.В. Пирожков, Н. Курдюмов, Р.Р. Эльман	161
ВЛИЯНИЕ ПРИЛОЖЕННОГО МАГНИТНОГО ПОЛЯ В ДИЭЛЕКТРИЧЕСКИХ СТРУКТУРАХ НА ПАРАМЕТРЫ ЭЛЕКТРОМАГНИТНОГО ОТКЛИКА ПРИ АКУСТИЧЕСКОМ ВОЗБУЖДЕНИИ Е.К. Помишин	164
АНДРЕЕВСКИЕ СОСТОЯНИЯ И ТОК В МНОГОТЕРМИНАЛЬНОМ ДЖОЗЕФСОНОВСКОМ КОНТАКТЕ А.Ф. Посалский	167
EVALUATION OF THE EFFECTS OF BIOLOGICAL AND PHYSICAL OPTIMIZATION FUNCTIONS ON THE QUALITY OF RADIATION THERAPY PLANS WITH SIMULTANEOUS DOSE ESCALATION FOR PROSTATE TUMORS E.A. Selikhova, Ya.N. Sutygina	170
КОРРОЗИОННЫЕ СВОЙСТВА ХРОМОВЫХ ПОКРЫТИЙ: РОЛЬ ПЛАЗМЕННОГО АССИСТИРОВАНИЯ ПРИ МАГНЕТРОННОМ РАСПЫЛЕНИИ Д.В. Сиделёв, В.А. Грудинин, К.А. Алкенова	173
SIMULATION OF THERMOPHYSICAL PROCESSES OF THE FUEL ASSEMBLY OF THE IRT-T REACTOR AT A POWER OF 10 MW A.A. Solomatin	175
МЕХАНИЗМЫ АНТИБАКТЕРИАЛЬНОЙ АКТИВНОСТИ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ НА ПРИМЕРЕ МНОГОСТЕННЫХ УГЛЕРОДНЫХ НАНОТРУБОК А.В. Степанов, А.П. Попов, Д.С. Юманов	179
ОСОБЕННОСТИ ЗОННОЙ СТРУКТУРЫ И СПИНОВОЙ ПОЛЯРИЗАЦИИ В ПОВЕРХНОСТНОМ СПЛАВЕ Ag ₂ -Sb на поверхности AG(4 2 3) Д.В. Терентьева	182
МОДЕЛИРОВАНИЕ КОГЕРЕНТНОГО СЛОЖЕНИЯ ИМПУЛЬСОВ ИЗЛУЧЕНИЯ В ИНТЕРФЕРОМЕТРЕ И СРАВНЕНИЕ С РЕЗУЛЬТАТАМИ ИЗМЕРЕНИЙ М.М. Токтаганова, М.В. Шевелев	185
ИССЛЕДОВАНИЕ ВЛИЯНИЯ УСЛОВИЙ НАНЕСЕНИЯ ПОКРЫТИЙ CRN/ZRN НА ИХ МЕХАНИЧЕСКИЕ СВОЙСТВА И НАПРЯЖЕНИЯ А.В. Филиппов, Н.Н. Шамарин	188
УПРАВЛЕНИЕ СТРУКТУРОЙ АЛЮМИНИЕВОЙ БРОНЗЫ ПРИ ПЕЧАТИ МЕТОДОМ ЭЛЕКТРОННО-ЛУЧЕВОГО АДДИТИВНОГО ПРОИЗВОДСТВА А.В. Филиппов, Е.С. Хорошко, Н.Н. Шамарин	191
МОДЕЛИРОВАНИЕ РАСПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНЫХ ПОЛЕЙ В ПРОЦЕССЕ ЭЛЕКТРОИМПУЛЬСНОГО ПЛАЗМЕННОГО СПЕКАНИЯ Лю Ханьлэй, Т.Р.Алишин	194
ОЦЕНКА НЕИЗМЕРЯЕМЫХ КОМПОНЕНТ ВЕКТОРА СОСТОЯНИЯ ДИНАМИЧЕСКИХ Объектов М.Л. Хильнук, Б.А. Тарасов, Ф.В. Перевошиков	197
TRIPLY PERIODIC MINIMAL SURFACE STRUCTURES MANUFACTURED BY EBM IN DIFFERENT APPROACHES D. Khrapov	200
ИЗУЧЕНИЕ ДЕФОРМАЦИИ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ В ПРОЦЕССЕ КВАЗИИЗОСТАТИЧЕСКОГО ПРЕССОВАНИЯ Х. Цзычжао, Т.Р. Алишин	203
ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ СТРУКТУРЫ ПРИ ФРИКЦИОННОЙ ПЕРЕМЕШИВАЮЩЕЙ ОБРАБОТКЕ МЕДНОГО СПЛАВА БрАМц9-2 А.М. Черемнов, Т.А. Калашникова, А.В. Чумаевский	206

9

ЭВОЛЮЦИЯ ЯЧЕИСТОЙ СУБСТРУКТУРЫ С ДЕФОРМАЦИЕЙ В СПЛАВАХ CU-AL H.B. Черкасов, А.H. Соловьев, Т.B. Черкасова	209
МАРТЕНСИТНЫЕ ПРЕВРАЩЕНИЯ ПОРИСТОГО НИКЕЛИДА ТИТАНА, СИНТЕЗИРОВАННОГО В РАЗНЫХ РЕАКЦИОННЫХ СРЕДАХ А.А. Шишелова, К.М. Дубовиков, А.С. Гарин	212
ВЫБОР И ОБОСНОВАНИЕ СОСТАВА МАТЕРИАЛА-НАКОПИТЕЛЯ ВОДОРОДА ДЛЯ МЕТАЛЛОГИДРИДНОГО БАЛЛОНА	
Р.Р. Эльман, Н. Курдюмов	215

УДК 621.039.546

КОРРОЗИОННАЯ СТОЙКОСТЬ ЦИРКОНИЕВОГО СПЛАВА ZR-1NB С CR/MO ПОКРЫТИЕМ ПРИ ВЫСОКОТЕМПЕРАТУРНОМ ОКИСЛЕНИИ

А.В. Абдульменова, М.С. Сыртанов

Научный руководитель: доцент, к.ф.-м.н. Е.Б. Кашкаров Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>ava75@tpu.ru</u>

CORROSION RESISTANCE OF CR/MO-COATED ZR-1NB ALLOY UNDER HIGH-TEMPERATURE OXIDATION

<u>A.V. Abdulmenova</u>, M.S. Syrtanov Scientific Supervisor: Assoc. Prof., Ph.D. E. B. Kaskarov Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: ava75@tpu.ru

Abstract. The corrosion resistance of Cr- and Cr/Mo-coated Zr-1Nb zirconium alloy was investigated. The barrier Mo layer with a thickness of 3 µm and the protective Cr coating with a thickness of 8 µm were deposited by magnetron sputtering. The samples were oxidized in air at a temperature of 1100 ° C for 15-60 min. The Mo sublayer limited Cr-Zr interdiffusion. A comprehensive analysis including SEM, in situ XRD and weight gain analysis of the Cr- and Cr/Mo-coated Zr-1Nb alloy under high-temperature oxidation and vacuum heating was performed.

Введение. В настоящее время ведутся активные международные исследования, направленные на разработку оболочек ТВЭЛов, обеспечивающих повышение эксплуатационных характеристик при нормальной эксплуатации (360 °C) и безопасность при возможных аварийных условиях, например, аварии с потерей теплоносителя (~1200 °C) [1]. На сегодняшний день наиболее перспективным материалом, рассматриваемым в качестве защитного покрытия для циркониевых оболочек ТВЭЛов, является хром, образующий защитный оксидный слой Cr₂O₃ на поверхности циркониевого сплава во время коррозии и высокотемпературного окисления, который действует как диффузионный барьер для кислорода в сплав [2]. Однако, при высоких температурах оболочки на границе циркониевого сплава и хромового покрытия происходит взаимная диффузия хрома и циркония, сопровождающаяся формированием эвтектики с температурой плавления 1332 °C [3]. Одним из путей решения указанной проблемы является разработка нового типа защитного покрытия на основе хрома с промежуточным барьерным слоем, препятствующим Cr-Zr взаимной диффузии. Целью настоящей работы является исследование барьерных свойств и коррозионного поведения хромовых покрытий с промежуточным слоем молибдена, осажденных методом магнетронного распыления на циркониевый сплав Zr-1Nb.

Экспериментальная часть. Осаждение покрытий осуществлялось методом магнетронного распыления с использованием ионно-плазменной установки, разработанной в ТПУ. В ходе работы на циркониевый сплав Zr-1Nb было нанесено двухслойное покрытие Cr (8 мкм)/Мо (3 мкм), а также

Россия, Томск, 26-29 апреля 2022 г.

однослойное хромовое покрытие, толщиной 8 мкм. Высокотемпературное окисление образцов проводилось в атмосферной печи при нагреве на воздухе от 500 до 1100 °C со скоростью нагрева ~20 °C/мин и последующей выдержкой в течение 15, 30, 45 и 60 минут. Прирост массы образцов измеряли на аналитических весах СР 124S. Микроструктура образцов до и после окисления была проанализирована с помощью сканирующего электронного микроскопа TESCAN MIRA3. Кристаллическая структура и фазовый состав образцов исследовался методом рентгеновской дифракции с использованием дифрактометра XRD-7000S. Для идентификации фаз использовались база данных PDF4+ 2021 и программа «SIeve». Исследования in situ структурно-фазовых превращений были проведены с использованием синхротронного излучения накопителя электронов ВЭПП-3 в вакууме в диапазоне температур 25-1250 °C.

Результаты. СЭМ изображения осажденных покрытий показали, что они имеют плотную столбчатую структуру во всех режимах осаждения. Результаты высокотемпературного окисления продемонстрировали, что образцы с покрытиями имеют значительно меньший привес, чем циркониевый сплав без покрытия. Прирост массы образца Cr/Mo увеличивается с \sim 3 до \sim 14 мг/см² с изменением длительности окисления в диапазоне 15-60 минут. Осаждение хромового покрытия снижает коррозионный привес в \sim 3 раза на протяжении всего времени окисления в сравнении с Cr/Mo покрытием, и в \sim 36 раз и \sim 23 раз при 15 и 60 минутах соответственно в сравнении с непокрытым циркониевым сплавом. Двухслойное Cr/Mo покрытие показало больший привес, чем однослойное хромовое покрытие, за счёт проникновения кислорода вдоль покрытия в области, не имеющий защитного покрытия. Однако СЭМ изображения после окисления показывают, что толщина защитного оксидного слоя Cr₂O₃ в обоих случаях примерно одинаковая, но видно, что толщина остаточного хрома в Cr/Mo покрытии больше, чем с однослойным хромовым покрытием (рис. 1). Также видна активная диффузия молибдена на границах раздела Mo/Zr и Cr/Mo с образованием фаз Mo₂Zr и Cr₃Mo соответственно.

Рис. 1. СЭМ изображения образцов после окисления: (a) Сг в течение 30 минут; (b) Сг в течение 60 минут; (c) Сг/Мо в течение 30 минут; (c) Сг/Мо в течение 60 минут

Россия, Томск, 26-29 апреля 2022 г.

Том 1. Физика

Анализ in situ дифракционных данных образца с Cr/Mo покрытием не показал существенных изменений фазового состава до 900 °C (рис. 2). Наряду с фазовым переходом α -Zr $\rightarrow\beta$ -Zr наблюдается образование фазы β -Zr (Mo), стабилизированной молибденом при 1000 °C. При достижении 1200 °C формируется фаза Mo₂Zr, что говорит о том, что молибден активно диффундирует в цирконий.

Рис. 2. Фазовые переходы в сплаве Zr-1Nb с Cr/Мо покрытием при линейном нагреве 25-1250 °C: а) в диапазоне 19-47° по 2θ; b) увеличенная область 22-25,5°

Заключение. В результате комплексного анализа структурно-фазового состояния циркониевого сплава с Cr/Mo покрытием при высокотемпературном окислении и нагреве в вакууме было установлено, что барьерный слой молибдена ограничивает диффузию хрома в циркониевый сплав при высокотемпературном окислении, обеспечивая большую толщину остаточного хрома в защитном покрытии. Диффузия молибдена при высоких температурах приводит к формированию Cr₃Mo и Mo₂Zr фаз на границах раздела. Толщины оксидных слоев Cr₂O₃ при окислении однослойного Cr покрытия и покрытий Cr/Mo схожи, что указывает на несущественное влияние Mo подслоя на коррозионную стойкость защитного Cr покрытия. Однако, более интенсивное окисление системы Mo-Zr может приводить к локальному окислению Zr сплава при нарушении сплошности покрытия, а также в результате диффузии кислорода к барьерному слою.

Исследование выполнено при финансовой поддержке РНФ, проект № 21-79-00175.

- Terrani K.A. Accident tolerant fuel cladding development: Promise, status, and challenges // Journal of Nuclear Materials. – 2018. – Vol. 501. – P. 13-30.
- Park D.J., Kim H.G., Jung Y., Park J.H., Yang J.H., Koo Y.H. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions // Journal of Nuclear Materials. – 2016. – Vol. 482. – P. 75-82.
- Yang J., Stegmaier U., Tang C., Steinbrück M., Große M., Wang S., Seifert H. J. High temperature Cr-Zr interaction of two types of Cr-coated Zr alloys in inert gas environment // Journal of Nuclear Materials. – 2021. – Vol. 547, No. 152806. – P. 1-10.

УДК 538.9

ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ СТРУКТУРЫ КАЛЬЦИЙ-ФОСФАТНЫХ ПОКРЫТИЙ ПРИ ВЫСОКИХ НАПРЯЖЕНИЯХ ПРОЦЕССА МИКРОДУГОВОГО ОКСИДИРОВАНИЯ

<u>Е.Б. Акимова¹</u>, Е.А. Казанцева^{2, 3}

Научный руководитель: к.т.н. Е.Г. Комарова²

¹Национальный исследовательский Томский политехнический университет,

Россия, г. Томск, пр. Ленина, 30, 634050

²Институт физики прочности и материаловедения СО РАН,

Россия, г. Томск, пр. Академический 2/4, 634055

³Национальный исследовательский Томский государственный университет,

Россия, г. Томск, пр. Ленина 36, 634050

E-mail: eba2@tpu.ru

REGULARITIES OF FORMATION OF CALCIUM PHOSPHATE COATING STRUCTURE UNDER HIGH VOLTAGES OF THE MICRO-ARC OXIDATION PROCESS

E.B. Akimova¹, E.A. Kazantseva^{2, 3}

Scientific Supervisor: PhD. E.G. Komarova²

¹Tomsk Polytechnic University, Russia, Tomsk, Lenina pr., 30, 634050

²Institute of Strength Physics and Materials Science SB RAS, Russia, Tomsk, Akademicheskii pr., 2/4, 634055

³Tomsk State University, Russia, Tomsk, Lenina pr., 36, 634050

E-mail: eba2@tpu.ru

Abstract. We performed the study of the regularities of formation of calcium phosphate (CaP) coatings structure under high voltages of the micro-arc oxidation (MAO) process. The increase of MAO duration from 1 to 10 min led to growth from 26.0 to 135.1 μ m, an increase of the average sizes of the spheres and median sizes of the pores in the ranges of 10.0–28.9 μ m and 1.8–6.6 μ m., respectively, a decrease of the surface porosity from 17.3 to 10.8 %, and did not affect the value of the inner porosity, which was varied from 29.3 to 35.7 %.

Введение. В последние годы метод микродугового оксидирования (МДО) перспективен для формирования на поверхности металлических медицинских имплантатов биоактивных кальцийфосфатных (КФ) покрытий с широким комплексом физико-химических, механических и биологических свойств, которые, в свою очередь, зависят от параметров процесса (напряжение, ток, время обработки и т.д.) [1, 2]. Целью настоящей работы было исследование закономерностей формирования структуры толстых КФ покрытий, нанесенных при высоких напряжениях процесса МДО, методом растровой электронной микроскопии (РЭМ).

Экспериментальная часть. Экспериментальные образцы размером 10x10x1 мм были изготовлены из технически чистого титана марки ВТ1-0. Формирование КФ покрытий проводили методом МДО на установке «Місго-Агс 3.0» в базовом электролите [2]. Покрытия наносили в импульсном однополярном режиме при высоком анодном напряжении 350 В, длительности импульсов 100 мкс, частоте 50 Гц в течение 1, 4 и 10 мин. Морфологию и структуру МДО покрытий исследовали методом РЭМ (LEO EVO 50, Zeiss, ЦКП «Нанотех» ИФПМ СО РАН). РЭМ-изображения были использованы для определения размеров структурных элементов методом «секущей» и пористости

покрытий металлографическим методом, как отношение площади изображения, приходящегося на поры, к общей площади микрофотографии. Статистический анализ данных размеров структурных элементов был выполнен путем построения диаграмм размаха (box plot), где квартили Q_1 и Q_3 – нижняя и верхняя грани прямоугольника, квартиль Q_2 (медиана) – горизонтальная линия, пересекающая прямоугольник, а среднее значение – внутренний квадрат. Согласно ГОСТ Р ИСО 16269-4-2017, верхнюю и нижнюю границы распределений, отделяющих выбросы, вычисляли по формуле: $Q_1 \pm k$ (Q_3 - Q_1), где k = 1,5 использовали для нормальных распределений и границы распределения называли внутренними, а k = 3 – для распределений, отличающихся от нормальных, и границы распределения называли внешними. Нормальность распределений оценивалась с помощью критерия Колмогорова-Смирнова с поправкой Лиллиефорса при уровне значимости p < 0,05. При описании нормального распределения для определения центральной тенденции использовали среднее значение и стандартное отклонение, а медиану и межквартильный диапазон (Q_1 – Q_3) – для распределений, не соответствующих нормальному.

Результаты. На рис. 1 представлены РЭМ-изображения поверхности и поперечных изломов КФ покрытий, сформированных в течение 1, 4 и 10 мин процесса МДО. Видно (рис. 1 а), что в течение 1 мин процесса МДО на поверхности титана формируется КФ покрытие толщиной $26,0 \pm 1,0$ мкм, в структуре которого содержатся многочисленные поры, а на поверхности присутствуют сфероидальные структурные элементы (сферы) с внутренними порами и внешними порами между сферами. За 4 мин процесса МДО вырастает КФ покрытие толщиной $90,0 \pm 3,9$ мкм, внутри которого содержатся многочисленные поры, поровые каналы, и поры больших размеров («макропоры»). На поверхности данных покрытий сферы и поры значительно увеличиваются в размерах, по сравнению с таковыми на поверхности покрытия, нанесенного в течение 1 мин, и при этом образуются полусферы, заполненные разориентированными кристаллами (размером < 10 мкм) пластинчатой формы. Дальнейшее увеличение длительности МДО до 10 мин приводит к дальнейшему росту толщины покрытия до 135,1 ± 5,3 мкм, увеличению количества «макропор» в объеме покрытия, увеличению размера сфер и пор в объеме и на поверхности покрытий, разрушению сфер на поверхности с образованием осколочных элементов и заполнением свободных поровых пространств осколками (рис. 1 в).

Рис. 1. РЭМ-изображения поверхности и поперечных изломов МДО покрытий, нанесенных при 350 В в течение: (a) – 1 мин; (б) – 4 мин; (в) – 10 мин

На рис. 2 а представлены диаграммы размаха (box-plot) размеров сфер. Все распределения сфер по размерам являются нормальными, поэтому для построения нижней и верхней границ диаграмм размаха использовали внутренние границы. С увеличением длительности нанесения покрытий от 1 до 10 мин

наблюдается уширение диапазона размеров сфер от 2,7 – 18,6 мкм до 8,3 – 52,6 мкм, что приводит к росту среднего размера сфер от 10,0 ± 3,3 мкм до 28,9 ± 8,6 мкм.

На рис. 2 б приведены диаграммы размаха (box-plot) размеров поверхностных и внутренних пор. При статистическом анализе данных размеров внутренних пор не были учтены в выборке экстремальные значения размеров локальных макропор (15 - 30 мкм), которые могли бы привести к ошибочным предположениям о распределениях. Все распределения пор по размерам получились несимметричными, что можно видеть из смещения их межквартильного размаха в сторону меньших значений, поэтому для построения нижней и верхней границ диаграмм размаха использовали внешние границы. С увеличением длительности нанесения покрытий от 1 до 10 мин наблюдается уширение диапазона размеров поверхностных и внутренних пор, соответственно, от 0,4 - 9,4 мкм до 1,9 - 14,9 мкм и от 0,3 - 7,4 мкм до 0,9 - 13,5 мкм. При этом медианы распределений поверхностных и внутренних пор по размерам увеличиваются соответственно от 2,4(1,5-3,5) мкм до 6,6(5,2-8,9) мкм и от 1,8(1,2-2,7) мкм до 3,8(2,8-5,5) мкм.

Рис. 2. Диаграммы размаха размеров сфер (а) и пор (б) в КФ покрытиях, и пористость КФ покрытий (в)

Измерения пористости покрытий показали, что с увеличением длительности процесса МДО от 1 до 10 мин поверхностная пористость покрытий уменьшается от $17,3 \pm 1,2 \%$ до $10,8 \pm 1,5 \%$. Это может быть связано с разрушением структурных элементов на поверхности и заполнением поровых пространств осколками. Морфологические изменения в объеме покрытий при увеличении длительности процесса МДО не привели к статистически значимому изменению внутренней пористости, которая составила $29,3 \pm 4,3 \%$, $35,2 \pm 5,2 \%$, $35,7 \pm 5,7 \%$ для покрытий, нанесенных соответственно в течение 1, 4 и 10 мин (рис. 2 в). Это может быть связано с одновременным увеличением как размеров внутренних пор, так и толщины покрытий, т.е. площади поперечного сечения.

Заключение. Показано, что увеличение длительности нанесения покрытий от 1 до 10 мин привело к росту их толщины от 26,0 до 135,1 мкм, увеличению средних размеров сфер и пор соответственно в диапазонах 10,0 – 28,9 мкм и 1,8 – 6,6 мкм, снижению поверхностной пористости от 17,3 до 10,8%, однако не повлияло на величину внутренней пористости, которая составила 29,3 - 35,7 %.

Работа выполнена в рамках государственного задания ИФПМ СО РАН, проект № FWRW-2021-0007.

- Dziaduszewska M., Shimabukuro M., Seramak T. et.al. Effects of Micro-Arc Oxidation Process Parameters on Characteristics of Calcium-Phosphate Containing Oxide Layers on the Selective Laser Melted Ti13Zr13Nb Alloy // Coatings. – 2020. – V. 10(8). – P. 745 (24).
- Комарова Е.Г., Седельникова М.Б., Казанцева Е.А. и др. Взаимосвязь между иерархией поровой структуры и физико-механическими свойствами кальций-фосфатных носителей лекарственных средств // Изв. ВУЗов. Физика. – 2020. – Т.63. – № 7. – С.131–138.

УДК 537.636

МОДЕЛИРОВАНИЕ МАГНИТНОГО ПОЛЯ МАГНЕТРОННОЙ РАСПЫЛИТЕЛЬНОЙ СИСТЕМЫ С ПЛОСКИМ КАТОДОМ

В.Е. Анорин

Научный руководитель: профессор, д.т.н., Р.А. Сурменев. Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 43, 634050 E-mail: <u>vea7@tpu.ru</u>

SIMULATION OF THE MAGNETRONIC FIELD OF A MAGNETRON SPUTTERING SYSTEM WITH A FLAT CATHODE

V.E. Anorin

Supervisor: Professor, Doctor of Technical Sciences, R.A. Surmenev. National Research Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 43, 634050 E-mail: vea7@tpu.ru

Abstract. In this work, we have simulated the magnetic field of a magnetron sputtering system in a flat target cathode with specified materials using the FEMM 4.2 program. The dependence of the magnetic field on the distance from the target is provided and discussed

Введение. Магнетронные распылительные системы (МРС) с плоским катодом являются наиболее распространенными для решения различных промышленных задач. В данной конструкции плоская мишень-катод, закрепленная над магнитной системой, распыляется на подложку за счет эффекта магнитной ловушки и локализации заряда [1, 2]. Магнитное поле, скрещенное с электрическим полем, позволяет удерживать плазму разряда у поверхности мишени [3]. Зона эрозии катода-мишени, ее ширина и положение определяются конфигурацией линий магнитного поля магнетрона [1]. В МРС используются постоянные магниты, для создания вблизи катода магнитного поля с замкнутыми силовыми линиями. Для расчета параметров зоны эрозии мишени и области локализации заряда необходимо учитывать распределение магнитного поля данной системы. Таким образом, актуальность данной работы состоит в изучении методом математического моделирования влияния геометрических размеров области эрозии мишени и конструкционных особенностей магнетрона на распределение магнитного поля в МРС с плоским катодом.

Экспериментальная часть. Для моделирования магнитного поля использовалась программа FEMM 4.2, находящаяся в свободном доступе в сети интернет, которая позволяет производить расчет конфигурации линий магнитного поля методом конечных элементов [4]. Расчеты проводятся, основываясь на уравнении (1)

$$\frac{1}{\mu}\nabla^2 \boldsymbol{A} = \boldsymbol{J} \tag{1}$$

где *А* – векторный потенциал поля, *µ* – магнитная проницаемость вещества, *J* – плотность токов.

Использую данную формулу, программа находит потенциал *A*, используя для этого заданные условия. Затем происходит построение силовых линий магнитного поля и расчет магнитной индукции и напряженности магнитного поля во всех точках заданной области [4].

Характер распределения магнитного поля МРС, изучаемой в данной работе, представлен на рисунке 1.

Рис. 1. Магнитное поле магнетронной распылительной системы с плоским катодом

В данной модели постоянные магниты выполнены из неодим-железо-бора 52, коэрцитивная сила материала $H_c = 891300$ А/м². Материал магнитопровода – электротехническая сталь с относительной магнитной проницаемостью $\mu = 94000$. В качестве изолятора используется медь, в качестве подложки – нержавеющая сталь AISI 430 ($\mu = 409$). Материал мишени – гидроксиапатит кальция. В качестве среды принимается воздух. Расстояние от мишени до подложки – 40 мм. Диаметр мишени – 95 мм. Толщина мишени – 10 мм.

Для оценки распределения магнитного поля в магнетроне целесообразно выявить зависимость индукции магнитного поля от расстояния *r* в пространстве «мишень-подложка». Соответствующая зависимость представлена на рисунке 2.

Россия, Томск, 26-29 апреля 2022 г.

Рис. 2. График зависимости модуля индукции магнитного поля от расстояния на промежутке «мишеньподложка»

Результаты. В рамках полученной модели распределения магнитного поля, можно сделать заключение, что зона эрозии мишени имеет следующую геометрию: расстояние относительно центра – 20 мм, ширина от 10 мм до 15 мм. Вид графика зависимости модуля магнитной индукции магнитного поля от расстояния r по удалению от мишени подтверждает теоретическую зависимость $B \square 1/r$. По полученным значениям можно сделать вывод о том, что при заданной конфигурации MPC магнитное поле вблизи мишени более чем в два раза превосходит магнитное поле вблизи подложки.

Вывод. Полученная модель магнитного поля MPC позволяет изучить его распределение в пространстве, а также геометрию зоны эрозии мишени. Данная модель может применяться для оценки ширины, формы и положения зоны эрозии мишени в MPC с плоским катодом при распылении различных немагнитных материалов.

Исследование выполнено при поддержке Российского научного фонда (проект №22-13-20043).

- 1. Кузьмичев А.И. Магнетронные распылительные системы. Киев: Аверс, 2008.
- 2. Данилин Б.С. Магнетронные распылительные системы. Москва: Радио и связь, 1982. 72 с.
- 3. Дьяконов А.Г., Фаттахов Р.К. Регулирование магнитного поля в перенастраиваемой магнетронной распылительной системе с мишенью конечных размеров // Вестник ИрГТУ. 2018. №1 (132).
- 4. Байда Е.И. Расчет электромагнитных и тепловых полей с помощью программы FEMM: научнометодическое пособие / Е.И Байда - Харьков: Типография НТУ "ХПИ", 2015 – 157 с.

УДК 539.2

ЭЛЕКТРОННО-ПУЧКОВАЯ ОБРАБОТКА ПОРОШКОВОГО СПЛАВА ТІМ

<u>Н.В. Артюхова</u>, С.Г. Аникеев, М.И. Кафтаранова Национальный исследовательский Томский государственный университет, Россия, г. Томск, пр. Ленина, 36, 634050 E-mail: <u>artyukhova_nad@mail.ru</u>

ELECTRON-BEAM PROCESSING OF TINI POWDER ALLOY

<u>N.V. Artyukhova</u>, S.G. Anikeev, M.I. Kaftaranov Tomsk State University, Russia, Tomsk, Lenin str., 36, 634050 E-mail: artyukhova nad@mail.ru

Abstract. In this work, we study the effect of electron-beam treatment on the structural features of the TiNi powder alloy obtained by calcium hydride reduction. Experimental two-dimensional porous samples based on TiNi powder alloy were obtained by diffusion sintering to use non-destructive methods to study their structural features. It has been established that electron-beam treatment leads to homogenization of the phase-chemical composition of the surface layer of the TiNi powder alloy, smoothing of the surface relief of TiNi powder particles, and healing of defects on their surface. Energy-dispersive X-ray spectral microanalysis showed that the concentration of Ti increases in the surface layer. This is due to the recrystallization of this layer containing particles of Ti2N and Ti4Ni2(O,N,C) during its remelting under the action of a high energy density of the electron beam during processing.

Введение. Создание новых биокомпозитных материалов для регенерации структуры поврежденных костных тканей является одной из важнейших задач [1]. Для их получения используют методы самораспространяющегося высокотемпературного синтеза (CBC) и спекания [1]. Преимуществом использования метода спекания является получение пористого сплава на основе TiNi со средним размером пор 50–150 мкм, узким распределением пор по размерам, а также с более однородным фазово-химическим составом, чем в случае CBC технологии, благодаря использованию готового порошка интерметаллида никелида титана. Конечные характеристики пористого спеченного материала позволяют оптимизировать сроки интеграции имплантируемого устройства [1]. В настоящее время структурные особенности и физико-механические свойства пористых сплавов, полученных спеканием гидридно-кальциевого порошка TiNi, исследованы во множестве работ [2, 3]. Очень важным при этом являются знания о структуре поверхности имплантата, так как поверхность пористого материала с первых этапов взаимодействия с организмом определяет кинетику интеграции имплантата. Однако одной из неразрешенных проблем остается невозможность применения неразрушающих методов исследования состояния поверхности пористого материала, как например, оптическая профилометрия.

Для получения доступа к развитой внутренней структуре пористого материала необходимо провести предварительное поперечное разрушение пористого образца, так как объемная развитая структура пористого материала не всегда позволяет провести исследования. Однако, поля напряжений и трещины могут исказить структуру поверхности стенок пор. Поэтому применение в исследованиях

двумерных пористых образцов с аналогичной структурой пористому телу сплава TiNi позволит решить данную проблему. Двумерный образец представляет собой порошкового сплава на основе TiNi на поверхности монолитного материала TiNi.

Применение методик воздействия концентрированными потоками энергии дает возможность получить новый комплекс высоких физических свойств материалов, и тем самым создавать новые функциональные материалы для использования в имплантологии [4]. С этой целью актуальным становиться рассмотрение влияния электронно-пучковая обработка на структуру пористого порошкового сплава на основе TiNi в контексте двумерных образцов.

Экспериментальная часть. В работе использовались двумерные пористые образцы сплава никелида титана, полученные напеканием тонкого однородного слоя порошка TiNi на монолитную пластину TiNi. Для получения экспериментальных образцов использовался порошок и интеметаллида TiNi полученного гидридно-кальциевым восстановлением. Предварительно порошок TiNi просушивали в сухожаровом шкафу при температуре 150 °C в течение 2 ч. Средний размер частиц, составил 140 мкм при фракции 0–200 мкм. Монолитные пластины были получены путем прокатки на двухвалковом прокатном стане из сплава никелида титана. Для получения композиционных образцов использовался методом диффузионного спекания при температуре (1240–1260) °C и времени спекания 15 мин. Давление внутри камеры составляло 6,65·10-4 Па, средней скоростью нагрева – 10 °C/мин. Напекание порошка осуществляли для того что исключить миграцию частиц порошка в процессе электронно-пучковой обработки. Размер образцов составлял 20×20 мм при толщине 1,5–2 мм.

Электронно-пучковую обработку полученных образцов проводили на установке РИТМ–СП (ООО Микросплав, г. Томск). В состав установки входит источник низкоэнергетических (10–30 кэВ) сильноточных (до 25 кА) электронных пучков (НСЭП) с длительностью импульса 2–4 мкс и диаметром пучка до 80 мм. Образцы облучались при высокой энергии электронов, равной 30 кэВ, при этом плотность энергии составляла Es ≈ 6 Дж/см2, количество импульсов обработки равно 30. Энергия и количество импульсов электронно-пучкового воздействия определялась экспериментально.

Исследована структура поверхности экспериментальных образцов, а также структура поперечного сечения металлографических образцов, полученных по стандартной методике. Изучение макро- и микроструктуры проводили методами растровой электронной микроскопии (РЭМ) на системе с электронным и сфокусированным ионным пучками Quanta 200 3D в режиме вторичных электронов при ускоряющих напряжениях 20–30 кВ. Элементный состав фаз определяли с помощью энергодисперсионного спектрометра EDAX ECON IV в составе растрового электронного микроскопа.

Результаты. Обнаружено, что электронно-пучковая обработка порошкового сплава на основе никелида титана, приводит к формированию более однородной структуры поверхности материала по сравнению с исходной. Отмечается изменение морфологии поверхности отдельных частиц порошка – сглаживается рельеф поверхности, залечиваются макродефекты (поры, трещины) поверхности. Это связано с образованием расплава под действием высокой плотности энергии пучка, что приводит к формированию новых поверхностей перекристаллизованного слоя после охлаждения. В зависимости от кривизны участка перекристаллизованный слой имеет неравномерную толщину (от 5 до 20 мкм). На поперечном сечении после электронно-пучкового воздействия отмечается исходная микроструктура частиц гидридно-кальциевого порошка TiNi, которая характеризуется разориентированным

мартенситным рельефом, состоящим из множественных кристаллов мартенсита TiNi-B19' с пакетнопирамидальной морфологией.

Установлено, что формирующаяся принципиально новая структура поверхностного слоя пористого образца, свободная от выделений вторичных фаз. Исследование химического состава перекристаллизованного слоя и основного объема порошкового сплава TiNi показало обогащение поверхностных участков по Ti. Фиксировано, что содержание Ti в приповерхностных слоях возрастает по сравнению с участками в объеме порошкового материала до 52.79 ат. % Ti. Повышенное содержание Ti связанно с плавлением частиц Ti2Ni и Ti4Ni2(O,N,C) под действием высоких температур электронно-пучковой обработки. Полученные результаты согласуются с данными работами для монолитных материалов на основе TiNi. Растворение в процессе перекристаллизации частиц вторичных фаз Ti2Ni и Ti4Ni2(O,N,C) в перспективе должно положительно повлиять на коррозионные свойства материала, так как данные частицы являются источниками питтинговой коррозии при знакопеременных нагрузках в агрессивных средах, к которым в том числе относятся тканевые жидкости организма человека. Обнаружено, что в областях недоступных для воздействия пучка сохраняется развитая макроструктура губчатых частиц порошка TiNi со сложной микроструктурой поверхности за счет террасовидного рельефа и фаз Ti2Ni.

Заключение. В исследовании показано влияние электронно-пучковой обработки на структурные особенности порошкового сплава TiNi, полученного методом гидридно-кальциевого восстановления. Электронно-пучковая обработка приводит к гомогенизации фазово-химического состава поверхностного слоя порошкового сплава TiNi. Микроструктура при электронно-пучковой обработке имеет явные преимущества перед микроструктурой без нее, так как представляет собой однородный твердый раствор фазы TiNi без вторичных выделений Ti2Ni и Ti4Ni2(O,N,C). Установлено, что в поверхностном слое переменной толщины происходит повышение концентрации Ti до 52.79 ат. % за счет плавления частиц Ti2Ni и перекристаллизации структуры под действием высокой плотности энергии пучка при обработке. Показано, что электро-пучковое воздействие приводит к сглаживанию микрорельефа поверхности частиц порошкового сплава TiNi и залечиванию дефектов на их поверхности.

Исследование выполнено за счет гранта Российского научного фонда (проект № 19-79-10045).

- Медицинские материалы и имплантаты с памятью формы. Медицинские материалы с памятью формы / Под ред. В.Э. Гюнтер. – Т.: Изд-во МИЦ, 2011. – 534 с.
- 2. Касимцев А.В., Левинский Ю.В. Гидридно-кальциевые порошки металлов, интерметалидов, тугоплавких соединений и композиционных материалов. М.: Изд-во МИТХТ, 2012. 247 с.
- 3. Anikeev, S.G., Artyukhova, N.V., Khodorenko, V.N. et al. The Effect of Cobalt on the Deformation Behaviour of a Porous TiNi-Based Alloy Obtained by Sintering // Russ Phys J. 2018. –V. 61. P. 1039–1046.
- Мейснер С.Н. и др. Влияние числа импульсов воздействий электронным пучком на изменение физико-механических свойств поверхностного слоя никелида титана // Известия вузов. Физика. 2016. – Т. 59., №7/2. – С. 159.

УДК 538.975; 539.231; 539.24

МОРФОЛОГИЯ И ТОПОГРАФИЧЕСКИЕ ПАРАМЕТРЫ ПОВЕРХНОСТИ Ti-Ni-Nb И Ti-Ni-Nb-Si СПЛАВОВ, СИНТЕЗИРОВАННЫХ НА TiNi-ПОДЛОЖКЕ

<u>А.А. Атовуллаева¹, Ф.А. Дьяченко²</u>

Научный руководитель: профессор, д.ф.-м.н. Л.Л. Мейснер^{1, 2}

¹ Национальный исследовательский Томский государственный университет,

Россия, пр. Ленина, 36, г. Томск, 634050

² Институт физики прочности и материаловедения СО РАН,

Россия, пр. Академический, 2/4, г. Томск, 634055

E-mail: sagittarius.a16@gmail.com

THE MORPHOLOGY AND TOPOGRAPHY OF THE Ti-Ni-Nb AND Ti-Ni-Nb-Si-BASED SURFACE ALLOYS SYNTHESIZED ON THE NITI-SUBSTRATE

<u>A.A. Atovullaeva</u>¹, F.A. D'yachenko²

Scientific Supervisor: Prof., Dr. L.L. Meisner^{1,2}

¹Tomsk State University, Russia, 36 Lenin Ave, Tomsk, 634050

² Institute of Strength Physics and Materials Science SB RAS, Russia, 2/4, pr. Akademicheskii, Tomsk, 634055 E-mail: <u>sagittarius.a16@gmail.com</u>

Abstract. The paper presents the results of a study the surface morphology and topographic parameters of Ti-Ni-Nb and Ti-Ni-Nb-Si-based surface alloys (SAs) synthesized on the TiNi substrate. It has been defined that the addition of Si to the deposited films ($Ti_{60}Nb_{30}Si_{10}$ (at. %)) used in the additive thin-film electron-beam synthesis of micron-thick SAs on NiTi-substrate leads to the appearance of a smoother surface microrelief. It was found that the parameter of the average roughness R_a for the Ti-Ni-Nb-Si-based SA has lower values of $R_a \approx 0.211 \mu m$, than for the Ti-Ni-Nb-based SA, in which $R_a \approx 0.355 \mu m$.

Введение. Сплавы на основе никелида титана (TiNi) относятся к группе «интеллектуальных» материалов, способных преобразовывать тепловую энергию в механическую работу [1]. Изделия из TiNi сплавов применяются в качестве миниатюрных изделий (*актуаторов*) в технологиях микроэлектромеханических систем (*МЭМС*), совершающих работу под влиянием знакопеременных динамических нагрузок [1]. Учитывая, что состояние поверхности и её свойства оказывают большое влияние на интегральные свойства миниатюрного изделия, актуальной является задача такой модификации поверхностного слоя TiNi сплава, которая приводила бы к повышению физикомеханических свойств всего изделия.

Обработка низкоэнергетическим сильноточным электронным пучком (НСЭП) является эффективным способом модификации поверхности и приповерхностных слоёв металлических материалов [2]. При обработке с помощью НСЭП систем [плёнка/подложка] можно формировать на поверхности металлической подложки поверхностный слой без резкой границы раздела с подложкой, получивший название поверхностный сплав (ПС) [2, 3]. В работе [3] на ТiNi-подложке с помощью аддитивного тонкоплёночного электронно-пучкового (АТП-ЭП) способа был синтезирован ПС[Ti-Ni-Nb] с однородной морфологией

поверхности, многофазной структурой, градиентом химического состава и физико-механических свойств. В данной работе на поверхности TiNi-подложки синтезирован ПС[Ti-Ni-Nb-Si].

Цель работы – исследовать влияние Si на морфологию поверхности и топографические параметры ПС[Ti-Ni-Nb-Si].

Материалы и методы исследования. В работе исследовали образцы размерами 10×10×1 мм, которые были вырезаны методом лазерной резки из горячекатаного листового проката, изготовленного из промышленного сплава на основе TiNi марки TH-1 (ООО «Промышленный центр МАТЕК-СПФ», Россия). Химический состав сплава: Ті(баланс)-55.75 Ni-0.035 О-0.02 С-0.003 N-0.001 Н (вес. %). Исходную поверхность TiNi-подложки перед АТП-ЭП синтезом ПС подготовили так, как описано в [4]. Синтез ПС проводили на модернизированной электронно-пучковой установке «РИТМ-СП» (ООО «Микросплав, Россия) [5]. Синтез ПС[Ті-Ni-Nb] и ПС[Ті-Ni-Nb-Si] выполнен следующим образом. После проведения предварительной НСЭП-обработки ($E_s = 2.5 \, \text{Дж/см}^2$, n = 10) ТіNi-подложку с помощью манипулятора попеременно устанавливали по оси магнетронного модуля для осаждения Ti₇₀Nb₃₀ и Ті₆₀Nb₃₀Si₁₀ (ат. %) плёнок толщиной ~ 100 нм и по оси НСЭП – для импульсного плавления $(E_s = 1.7 \, \text{Дж/см}^2, n = 10)$ системы [плёнка/подложка]. Число циклов «осаждение + импульсное плавление» составляло N=10, так, чтобы расчётная толщина ПС не превышала ~ 1 мкм. Циклы «осаждение + импульсное плавление» происходили в едином вакуумном цикле [5]. Исследование морфологии поверхности методом оптической металлографии (ОМ) проведено на оптическом микроскопе Axiovert 200MAT (Zeiss, Германия ЦКП «НАНОТЕХ» ИФПМ СО РАН, Томск) с использованием метода дифференциального интерференционного контраста (ДИК). Исследование топографии поверхности проведено методом оптической интерференционной профилометрии (ОИП) на установке New View 6200 (Zygo, Германия ЦКП «НАНОТЕХ» ИФПМ СО РАН, Томск).

Результаты. На рисунке 1а приведено изображение поверхности ПС[Ti-Ni-Nb], который характеризуется наличием выглаженных областей и областей с неравномерно распределёнными локальными микронеоднородностями кратероподобного типа. Интегральный параметр средней шероховатости R_a для ПС[Ti-Ni-Nb] составляет ~0,355 мкм. Отклонения профиля по глубине и высоте (рисунок 1в) имеют регулярный характер распределения и составляют от ~-4 до ~+1,4 мкм. Микрорельеф и топография поверхности ПС[Ti-Ni-Nb] в большей степени определяется топографическими особенностями поверхности TiNi-образцов после предварительной НСЭП-обработки ($E_s = 2,5 \ Дж/см^2, \ n = 10$). Вероятно, что в процессе аддитивного импульсного плавления систем [Ti-Nb-пленка/TiNi-подложка] меньшее количество циклов синтеза (N = 10) не позволяет полностью сглаживать остаточный, после НСЭП-обработки, кратероподобный микрорельеф.

На поверхности ПС[Ti-Ni-Nb-Si] области с неравномерно распределёнными локальными неоднородностями наблюдаются значительно реже (рисунок 1б). Продольные размеры неоднородностей не превышают ~ 40 мкм. Добавление 10 ат. % Si в состав осаждаемой пленки при формировании ПС[Ti-Ni-Nb-Si] привело к уменьшению, по сравнению с ПС[Ti-Ni-Nb], параметра средней шероховатости R_a до ~ 0,211 мкм. Отклонения профиля по глубине и высоте по всей исследуемой площади поверхности тоже уменьшились и составляют от ~ -2,6 до ~ +1,3 мкм (рисунок 1г). Учитывая, что синтез ПС[Ti-Ni-Nb] и ПС[Ti-Ni-Nb-Si] проводили при одинаковых режимах, Si в осаждаемой пленке играет важную роль в выглаживании поверхности ПС. Оценку роли Si планируется провести в отдельном исследовании.

Рис. 1. Оптические изображения в режиме ДИК (а, б) и топографические 2D-изображения (в, г) поверхности ПС[Ti-Ni-Nb] (а, в) и ПС[Ti-Ni-Nb-Si] (б, г). На рисунках (в, г) даны значения параметра средней шероховатости R_a

Заключение. Анализ результатов, полученных методами ОМ и ОИП показал, что добавление Si в состав осаждаемой плёнки ($Ti_{60}Nb_{30}Si_{10}$) при АТП-ЭП синтезе ПС[Ti-Ni-Nb-Si] приводит выравниванию (сглаживанию) поверхностного микрорельефа с параметром средней шероховатости R_a в ~1.7 раз меньшим, по сравнению с его значением в ПС[Ti-Ni-Nb].

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 20-33-90034.

- Mohd J.J., Leary M., Subic A., Gibson A.M. A review of shape memory alloy research, applications and opportunities // Mater. Des. – 2014. – Vol. 56. – P. 1078–1113.
- Ротштейн В.П., Проскуровский Д.И., Озур Г.Е. Иванов Ю.Ф. Модификация поверхностных слоев металлических материалов низкоэнергетическими сильноточными электронными пучками – Новосибирск, 2019. – 347 с.
- Meisner L.L. Rotshtein V.P., Semin V.O., Markov A.B., Yakovlev E.V., Meisner S.N., Shepel D.A., Neiman A.A., Gudimova E.Yu., D'yachenko F.A., Mukhamedova R.R. Microstructural characterization and mechanical behavior of nanocomposite Ti-Ni-Nb surface alloys synthesized on TiNi SMA substrate by additive thin-film electron-beam mixing // Materials characterization. 2020. Vol. 166. P. 110455(1-15).
- Дьяченко Ф.А., Мейснер С.Н., Яковлев Е.В. Влияние плотности энергии электронного пучка на изменение физико-механических свойств поверхностного слоя никелида титана // Перспективы развития фундаментальных наук. – Томск: Изд–во ТПУ, 2019. – С. 136 – 138.
- 5. Марков А.Б., Миков А.В., Озур Г.Е., Падей А.Г. Установка РИТМ-СП для формирования поверхностных сплавов // ПТЭ. 2011. №6. С. 122–126.

УДК 539.16

ПРИМЕНЕНИЕ ПАКЕТА GEANT4 ДЛЯ МОДЕЛИРОВАНИЯ РАДИАЦИОННЫХ ДОЗ ПРИ РАБОТЕ СИЛЬНО-ТОЧНОГО ИМПУЛЬСНО-ПЕРИОДИЧЕСКОГО УСКОРИТЕЛЯ ЭЛЕКТРОНОВ

<u>К.В. Афанасьев.</u> А.Н. Синяков, Р.В. Цыганков Научный руководитель: д.ф-м.н. В.В. Ростов Институт Сильноточной Электроники СО РАН, Россия, г. Томск, пр. Академический, 2/3, 634055 E-mail: <u>afanasiev@lfe.hcei.tsc.ru</u>

GEANT4 SIMULATION OF THE RADIATION DOSES FOR HIGH-CURRENT REPETITIVELY PULSED ELECTRON ACCELERATOR

<u>K.V. Afanasiev</u>, A.V. Sinyakov, R.V. Tsygankov Scientific Supervisor: Ph.D., V.V. Rostov Institute of High Current Electronics, Russia, Tomsk, Academical avenue., 2/3, 634055 E-mail: afanasiev@lfe.hcei.tsc.ru

Abstract. In this study, the Geant4 Monte Carlo toolkit was used to simulate radiation doses for a high-current repetitively pulsed electron accelerator. We have created a model that allows us to predict the distribution of radiation doses around an operating accelerator. The materials and geometry of the accelerator were in accordance with the design documentation. The values obtained are compared with the measurement results. Application of the developed model will make it possible to predict the distribution of the radiation dose around the accelerator.

Введение. Радиационная защита является одним из важнейших аспектов, сопровождающих разработку и эксплуатацию источников ионизирующих излучений. Наиболее распространенный тип таких источников – это ускорители электронов с энергией до 1 МэВ. При этом, независимо от цели и метода использования пучка электронов, работа таких ускорителей сопровождается повышенным радиационным фоном вокруг работающей установки. К таким ускорителям относятся источники СВЧ-излучения. Принцип работы таких установок основан на замедлении ускоренных электронов, где проходя через замедляющую структуру, электронный пучок становится источником коротко-волнового излучения (1-100 ГГц).

Для наиболее продуктивного исследования влияния различных параметров на радиационный фон, необходимо разработать модель установки. Модель должна быть чувствительна как к геометрии ускорителя, так и к параметрам пучка электронов. Такую возможность дает нам программный пакет GEANT4 [1]. Помимо вышесказанного, GEANT4 позволяет учесть все виды излучения, необходимые при моделировании радиационных поглощенных доз в каком-либо физическом объеме.

В данной работе мы приводим описание модели и результаты моделирования эффективных поглощенных доз, полученных с помощью программного пакета GEANT4. Для построения модели, в качестве прототипа установки был использован источник СВЧ-излучения, разработанный в ИСЭ СО РАН и введенный в эксплуатацию в 2021 году. Результаты моделирования эффективных поглощенных доз сравниваются с измерениями.

Рис. 1. Слева - общий вид ускорителя. Справа детально показана часть ускорителя, где происходит ускорение и утилизация электронов

Описание модели. В представленной работе в качестве объекта исследования был выбран источник СВЧ-излучения на основе импульсно-периодического генератора «СИНУС-350». Данная установка была собрана и введена в эксплуатацию в 2021 году в Институте Сильноточной электроники СО РАН. Энергия ускоренных электронов – 400 кэВ, ток пучка – 5 кА, частота импульсов – 500 имп./сек. Общий вид установки с указанием положения системы координат показан на рисунке 1. Подробное описание принципа работы и устройств на основе генератора СИНУС-350, разрабатываемых в ИСЭ СО РАН, можно найти в работах [2-4]. В основе модели лежит задание конструкции ускорителя и параметров электронного пучка. Для определения геометрии и материалов мы использовали конструкторскую документацию на исследуемый ускоритель. На рисунке 1 детально показана та часть, где происходит утилизация электронов. Внешний радиус этой части ускорителя – 180 мм.

Рис. 2. Распределение по энергии для электронов

Начальные параметры электронов – это положение, начальное направление движения и энергия. Эти три ключевых параметра достаточно сильно влияют на степень радиационного фона за пределами ускорителя. Информация о всех начальных параметрах была получена с помощью программного пакета 27

КАRAТ. Этот пакет был создан для расчета замедляющей структуры с целью получения необходимых параметров СВЧ-излучения.

Кинетическая энергия электронов разыгрывается по закону, показанному на рис. 2. Как видно, часть электронов имеет энергию свыше 400 кэВ. Такие электроны проходят процедуру двойного ускорения. Таким образом, их энергия может достигать 860 кэВ.

Положение электронов вдоль оси Z разыгрывается следующим образом: 88% всех электронов вдоль коллектора (Z = (54-57) мм), 12% - вдоль замедляющей структуры (Z = (12-54) см.

Начальное направление электронов разыгрывается равномерно в диапазоне (10 - 90) градусов под углов к внутренней стенке ускорителя.

Рис. 3. Распределение событий по недостающей эффективной массе

Результаты. На рисунке 3 приведены результаты измерения и моделирования на расстоянии 1 м вдоль оси X от центра ускорителя. Для каждой точки, соответствующей измерениям, показана погрешность, которую имеет прибор. В общем, результаты моделирования находятся в неплохом согласии с измерениями. Построенная модель достаточно адекватно описывает распределение радиационных доз.

Работа выполнена при поддержке РНФ, грант № 22-29-01278.

- 1. Agostinelli S. et al. Geant4-a simulation toolkit // Nucl. Instr. Meth. A. 2003. V. 506. P. 250-303.
- Rostov V. et al. Review of experiments on microwave beam steering in arrays of high-power oscillators by the control of voltage rise time // IEEE Transactions on Plasma Science. – 2018. – V. 46. – P. 3640
- Rostov V. Tsygankov, R.V., Stepchenko, A.S. et al. High-efficiency relativistic generators of nanosecond pulses in the millimeter-wavelength range // Radiophysics and Quantum Electronics. – 2019. – V. 62. – P. 467
- Totmeninov E.M., Rostov V.V. Generation of a sequence of powerful ultrashort microwave pulses based on the effect of superradiance of a relativistic backward-wave oscillator with reflectors at the ends of the interaction space // Technical Physics Letters. - 2021. - V. 47. - P. 46

УДК 531

ПАРАМЕТРЫ ТЕТРАХИРАЛЬНОЙ СТРУКТУРЫ КАК ФАКТОР ПРОГРАММИРУЕМОСТИ МЕХАНИЧЕСКОГО ПОВЕДЕНИЯ МЕТАМАТЕРИАЛА

Л.Р. Ахметшин, Р.Т. Мухтаров

Научный руководитель: доцент, д.ф.-м.н. И.Ю. Смолин Национальный исследовательский Томский государственный университет, Россия, г. Томск, пр. Ленина, 30, 634050 Институт физики прочности и материаловедения СО РАН, Россия, г. Томск, Академический пр., 2/4, 634055 E-mail: <u>Akhmetshin.lr@gmail.com</u>

TETRACHIRAL STRUCTURE PARAMETERS AS PROGRAMMABILITY FACTOR IN THE METAMATERIAL MECHANICAL BEHAVIOR

L.R. Akhmetshin, R.T. Mukhtarov Scientific Supervisor: Prof., Dr. I.Yu. Smolin Tomsk State University, Russia, Tomsk, Lenin str., 36, 634050 Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Russia, Tomsk, 2/4 Akademicheskii ave., 634055 E-mail: akhmetshin.lr@gmail.com

Abstract. Metamaterials are materials whose properties are determined by the artificially created structure but not the chemical composition of the base material. Metamaterials realize the required mechanical response. Their programmable behavior is achieved through various factors. In this paper, attention is focused on the programmability of the mechanical behavior of the metamaterial, in particular, twist. For this task, the parameters of the tetrachiral structure were varied in some ranges. It was found that an increase in volume caused a decrease in twist angle.

Введение. Метаматериалы – материалы, свойства которых зависят в меньшей степени от химического состава базового материала и в большей степени от искусственно заданной структуры. Развитие механических метаматериалов частично связано с достижениями в технологиях аддитивного производства, которые позволили изготавливать материалы с произвольно сложной микро / наноструктурой. Стремление создавать механические метаматериалы связано с желанием обеспечения их определенным набором физико-механических свойств. Хиральные метаматериалы обладают несколькими известными преимуществами, такими как появление дополнительной степени свободы при одноосном нагружении – поворота [1].

Создание метаматериала с программируемыми свойствами может быть получено за счет изменения формы структуры или внедрения топологических дефектов в образцы [2, 3]. В этой связи ячеистая структура представляется наиболее удачной. Тетрахиральный метаматериал, используемый в данной работе, также обладает упорядоченной структурой.

29

В данной работе акцент сделан на программируемость свойств механического метаматериала посредством изменения параметров тетрахиральной структуры.

Структура образца из метаматериала. Создание геометрической модели образца из метаматериала начинается с эскиза тетрахиральной структуры (рис. 1а). На этом этапе необходимо задать параметры структуры. В качестве исходных параметров взяты значения: l = 50 (мм) - длина тетрахирального элемента, $t = 5 \text{ (мм)} - ширина ребра, <math>r_2 = 17,5 \text{ (мм)} - внешний радиус кольцевого элемента, <math>r_1 = 12,5 \text{ (мм)} - внутренний радиус кольцевого элемента, <math>\theta -$ угол наклона ребра, который зависит от r_2 . Для последующего создания объемной тетрахиральной структуры необходимо придать эскизу толщину (рис. 16) h = 5 (мм). Затем строится кубическая элементарная ячейка, в которой грани имеют тетрахиральную структуру (рис. 1в). При многократном объединении элементарных ячеек создается аналог макротела (рис. 1г). В данной работе количество элементарных ячеек в образце из метаматериала составляло n = 81.

Рис. 1. Построение образца из метаматериала, (а) эскиз тетрахиральной структуры с параметрами, (б) тетрахиральная структура, (в) элементарная ячейка метаматериала, (г) образец из метаматериала

Математическая постановка. Математическая постановка задачи одноосного нагружения образца из механического метаматериала принята в рамках теории упругости. Ограничиваемся случаем перемещений, не приводящих к контактному взаимодействию составляющих тетрахиральной структуры. Для анализа поведения образца из метаматериала в условиях одноосного нагружения вдоль наибольшей длины образца граничные условия прикладывались следующим образом: жесткая заделка на одной из поверхностей (грани) образца из метаматериала, перемещение на противоположной поверхности (грани) образца из метаматериала на 15 мм. На остальных гранях заданы свободные граничные условия.

Результаты и обсуждение. Существует множество характеристик метаматериала, которые необходимо контролировать. В качестве примера, рассмотрим характеристику необычного механического отклика – угол скручивания образца. При неизменном количестве элементарных ячеек и их размеров, остается четыре параметра, которые могут изменяться независимо (r_1 , r_2 , h, t). Независимо означает, что изменение одного параметра не влечет изменение оставшихся.

При изменении параметров было замечено, что объем образца из метаматериала изменяется. Наибольшее изменение объема наблюдалось, когда уменьшался внутренний радиус кольца. Очевидно было предположить, что этот параметр будет больше остальных влиять на изменение угла скручивания. Математические эксперименты показали, что в действительности наиболее влиятельным параметром оказалась ширина ребра. Разница между максимальным углом скручивания при изменении ширины ребра и внутреннего радиуса составляет 1,15 %. В то время как, разница между влиянием ширины ребра и внешним радиусом кольца составляет 4,97 %. Наиболее незначительным параметром, в нашем случае, оказалась толщина ребра, разность с шириной ребра – 33,21 %. Подробнее с полученными результатами можно ознакомиться в работе [4].

Заключение. В результате численных исследований выявлены зависимости влияния параметров структуры на механический отклик тетрахирального метаматериала. Наиболее важным фактором, влияющим на программируемость свойств при создании метаматериала, является объем базового материала. Результаты позволят проектировать метаматериал с оптимальными параметрами структуры.

Работа выполнена в рамках государственного задания ИФПМ СО РАН, тема номер FWRW-2022-0003.

- Frenzel T., Kadic M., Wegener M. Three-dimensional mechanical metamaterials with a twist // Science. 2017. – Vol. 358, No. 6366. – P. 1072–1074.
- Meeussen A.S., Oğuz E.C., Shokef Y., Hecke M. Topological defects produce exotic mechanics in complex metamaterials // Nature Physics. – 2019. – Vol. 16. – P. 307–311.
- Meeussen A.S., Oğuz E.C., Hecke M., Shokef Y. Response evolution of mechanical metamaterials under architectural transformations // New Journal of Physics. – 2020. – Vol. 22. – No. 023030. – P. 1-7.
- Akhmetshin L. R., Smolin I. Yu. Influence of unit cell parameters of tetrachiral mechanical metamaterial on its effective properties // Nanoscience and Technology: An International Journal. – 2020. – Vol. 11, No. 3. – P. 265–273.

УДК 69.018.620.187

ВЛИЯНИЕ ТЕРМООБРАБОТОК НА МАРТЕНСИТНЫЕ ПРЕВРАЩЕНИЯ И МЕХАНИЧЕСКИЕ СВОЙСТВА ТОНКОСТЕННЫХ ТРУБОК ИЗ НАНОКРИСТАЛЛИЧЕСКОГО СПЛАВА TINI

С.М. Биттер, К.А. Жеронкина

Научный руководитель: доцент, д.ф.-м.н. Т.М. Полетика Национальный исследовательский Томский государственный университет Россия, г. Томск, пр. Ленина, 36, 634050 Институт физики прочности и материаловедения СО РАН Россия, г. Томск, пр. Академический, 2/4, 634055 E-mail: <u>s_bitter911996@mail.ru</u>

EFFECT OF HEAT TREATMENT ON MARTENSITIC TRANSFORMATIONS AND MECHANICAL PROPERTIES OF THIN-WALLED TUBES MADE OF NANOCRYSTALLINE TINI ALLOY

<u>S.M. Bitter</u>, K.A. Zheronkina Scientific Supervisor: Assistant Professor, Dr. T.M. Poletika Tomsk State University, Russia, Tomsk, Lenin str., 634050 Institute of Strength Physics and Materials Science SB RAS, Russia, Tomsk, Academic str., 634055 E-mail: <u>s bitter911996@mail.ru</u>

Abstract. The relationship between the evolution of the structure during heat treatment with the multi-stage martensitic transformations $B2 \rightarrow R \rightarrow B19'$ and the mechanical properties of the nanocrystalline alloy Ti-50.9 at.% Ni with the effects of shape memory and superelasticity is investigated.

Введение. Нанокристаллические (НК) сплавы TiNi в последнее время вызывают большой практический и научный интерес благодаря наличию эффектов памяти формы и сверхэластичности, высокой прочности и повышенной функциональной стабильности. Это определяет возможность их использования в медицине в качестве материалов для миниатюрных компонентов систем медицинского назначения [1]. Особый интерес вызывают сплавы TiNi с избытком Ni, подверженные старению с выпадением дисперсных когерентных частиц фазы Ti₃Ni₄ [1]. Выделение частиц в сплавах TiNi обычно приводит к мультистадийности мартенситных превращений B2->R->B19', т.е. к превращению B2аустенита в мартенсит В19' через переходную R-фазу. Основным требованием при изготовлении из НК TiNi устройств медицинского назначения является предсказуемость механического поведения сплава и сохранение «окна» сверхэластичности вблизи температуры человеческого тела, что напрямую связано с температурами мартенситных превращений и зависит от режимов термообработки. В то же время взаимосвязь эволюции структуры, реализуемой в процессе отжигов НК сплавов TiNi с последовательностью мартенситных превращений и неупругими свойствами остаются недостаточно изученной. Целью настоящей работы является исследование влияния термообработок на особенности мартенситных превращений и деформационное поведение нанокристаллического сплава Ti-50,9 ат.% Ni с эффектом памяти формы и сверхэластичности.

Материалы и методы исследования. Образцы для исследований вырезали из трубок из коммерческого нанокристаллического сплава Ti-50,9 ат.% Ni (Vascotube GmbH), предназначенных для изготовления внутрисосудистых стентов. Внешний диаметр трубок – 2,34 мм, толщина стенок – 0,23мм. Исходные образцы имели зеренную/субзеренную структуру со средним размеом структурных элементов (зерен, субзерен) 70 нм. Проводили отжиги при температурах 300°С (низкотемпературное старение), 400°С (интенсивное выделение частиц) и 500°С (начало рекристаллизации) в течение 1 часа в соляной ванне с с последующей. закалкой в воду комнатной температуры. Испытания на одноосное растяжение в режиме «нагружение – разгрузка» образцов в виде трубок проводили со скоростью 4·10⁻⁵ с⁻¹ при комнатной температуры начала и конца прямых и обратных мартенситных превращений определяли методом измерения электросопротивления. Для изучения особенностей мультистадийности превращений использовали метод ДСК на дифференциальном сканирующем калориметре NETZSCH DSC 404 F1, скорость нагрева/охлаждения – 10 К/мин.

Результаты. Критические температуры начала мартенситных превращений B2 \rightarrow R (T_R), а также начало (M_s , A_s) и окончание (M_f , A_f) прямого (M_s , M_f) и обратного (A_s , A_f) мартенситного преобразования R \rightarrow B19 приведены в таблице 1. Видно, что для всех исследованных образцов сплава наблюдается мультистадийность последовательности прямых и обратных мартенситных превращений B2 \leftrightarrow R \leftrightarrow B19'.

Таблица 1

<i>Т</i> отжига	T_R , °C	M_{S} , °C	M_{f} , °C	A_{S} , °C	A_{f} , °C
Исходный	-6	-74	-140	-45	-26
300°C	22	-50	-134	-37	-14
400°C	33	-30	-115	-2	18
500°C	14	-25	-67	3	9

Критические температуры мартенситных превращений

Результаты испытаний на одноосное растяжение для образцов приведены на рисунке 1, а механические характеристики – в Таблице 2.

Рис. 1. Диаграммы «нагружение-разгрузка», полученные в процессе одноосного растяжения

Установлено, что после отжига при 300°С сплав демонстрирует сверхэластичное поведение, что характерно для сплавов TiNi при деформации выше A_f [1]. Сверхэластичность сплава обеспечивается выделением в структуре В2-матрицы когерентных частиц Ti₃Ni₄ размером менее 5 нм на дислокациях, что способствует их блокировке при деформировании [2] и упрочнению В2-аустенита. Отжиг при 400°С сопровождается интенсивным гетерогенным зарождением в субструктуре В2-матрице когерентных частиц Ti₃Ni₄ размером до 20 нм [2], что эффективно снижает концентрацию Ni в B2-аустените и

увеличивает температуру $B2 \leftrightarrow R$ превращения T_R [1] (таблица 1). Деформация сплава в условиях стабилизации R-фазы не обеспечивает формовосстановление образцов при разгрузке, кривая демонстрирует эффект памяти формы (рис. 1). Отжиг в интервале рекристаллизации (500°C) активизирует рост зерен, растворение наночастиц Ti_3Ni_4 и формирование крупных частиц на границах и стыках зерен [2], что сопровождается разупрочнением B2-аустенита. Диаграмма «нагружение-разгрузка» демонстрирует рост площадки фазовой текучести, что обусловлено уменьшением критического напряжения для B2 \rightarrow B19' превращения, а также возможностью пластического течения материала.

Таблица 2

<i>Т</i> отжига	σ _{0,2} , МПа	σ _{мп} , Мпа	ε _{СЭ} , %	€ _{возвр} , %	ε _{ост} , %
Исходный	246	275	0,63	6,47	0,2
300°C	209	230	0,49	5,4	0,1
400°C	128	150	0,53		4,5
500°C	110	135	0,71		6,8

Механические характеристики исследуемых образцов

Заключение. С ростом температуры отжига в интервале 300° C÷ 500° C происходит сдвиг критических температур мультистадийного мартенситного превращения B2 \rightarrow R \rightarrow B19' и изменение неупругого поведения HK сплава Ti-50,9 ат.% Ni от эффекта сверхэластичности при низкотемпературном старении (300°C) к эффекту памяти формы в условиях интенсивного диффузионного распада B2-аустенита при 400°C. Установлена взаимосвязь характера неупругости сплава с изменением пространственного распределения частиц Ti₃Ni₄ при увеличении температуры отжига. Полученные результаты могут быть использованы при выборе режимов термообработок сплава TiNi в технологии производства отечественных сосудистых стентов.

Работа выполнена в рамках ГЗ ИФПМ СО РАН, проект FWRW-2021-0004.

- Ооцука К., Симидзу К., Судзуки Ю. Сплавы с Эффектом памяти формы /Под ред. Х. Фунакубо. М.: Металлургия, 1990. – 224 с.
- 2. Poletika T.M., Girsova S.L., Lotkov A.I. Ti₃Ni₄ precipitation features in heat-treated grain/subgrain nanostructure in Ni-rich TiNi alloy // Intermetallics. 2020. Vol. 127. p. 106961.

УДК 538.951

ОСАЖДЕНИЕ ХРОМОВЫХ ПОКРЫТИЙ С ПОМОЩЬЮ МАГНЕТРОННОГО РАСПЫЛЕНИЯ «ГОРЯЧЕЙ» МИШЕНИ С АССИСТИРОВАНИЕМ ВНЕШНИМ ПЛАЗМЕННЫМ ИСТОЧНИКОМ

<u>А.А. Бондарь</u>, В.А. Грудинин, Д.В. Сиделёв Научный руководитель: доцент, к.т.н. Д.В. Сиделёв Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>aab195@tpu.ru</u>

CHROMIUM COATING DEPOSITION USING HOT TARGET MAGNETRON SPUTTERING ENHANCED BY ADDITIONAL PLASMA SOURCE

<u>A.A. Bondar</u>, V.A. Grudinin, D.V. Sidelev Scientific Supervisor: Assistant Professor, PhD D.V. Sidelev Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: aab195@tpu.ru

Abstract. This work shows the possibility to tailor a hardness of 1 μ m-thick Cr coatings obtained by high-rate deposition using magnetron sputtering with a "hot" target. For this purpose, an external plasma source was additionally applied to control the hardness of the Cr coatings in the range of 4 to 18 GPa.

Введение. Активно развиваются технологии осаждения плёнок методом магнетронного распыления. Благодаря разнообразию параметров процесса можно получать плёнки различного элементного состава и структуры, с различным набором свойств. Процесс магнетронного распыления представляет собой выбивание (распыление) частиц с поверхности мишени посредством бомбардировки газовыми ионами плазмы. Существующие распылительные системы имеют ограниченную производительность, обычно не более 10-20 нм/с. Скорость осаждения покрытий может быть значительно увеличена, т.е. примерно на порядок, за счет использования испарения или сублимации поверхности мишени в дополнение к распылению [1]. Однако при значительном повышении скорости осаждения было обнаружено, что управление свойствами таких покрытий стало гораздо сложнее. Основная причина такого эффекта заключается в том, что увеличение скорости осаждения покрытий происходит за счёт включения сублимированных частиц в эрозионный поток. Поэтому требуется использовать дополнительный инструмент для управления свойствами покрытий при высоких скоростях осаждения. Настоящая работа посвящена определению роли внешнего источника плазмы на свойства хромовых покрытий, полученных с помощью магнетронного распыления «горячей» Сг мишени.

Экспериментальная часть. Исследования выполнялись на вакуумной ионно-плазменной установке, разработанной в научно-образовательном центре Б.П. Вейнберга. Детальное описание установки приведено в работе [2]. Режимы осаждения хромовых покрытий, толщиной 1 мкм, представлены в таблице 1, поток аргона в камеру - составлял 30 см³/мин. Магнетронная распылительная система подключалась к сильноточному источнику питания APEL-5-DOMS-1200. В качестве подложки

35

выбрана сталь марки 12X18H10T (25×25×2 мм³). В эксперименте в качестве внешнего источника плазмы использовался радиочастотный плазменный генератор (РПГ-128, ООО "Лаборатория вакуумных технологий плюс") с мощностью 1000 Вт. В процессе осаждения покрытий к образцам прикладывался потенциал смещения, равный -100 В. Подложки крепились на подложкодержателе, который обеспечивал их планетарное вращение.

Таблица 1

N⁰	1	2	3	4	5	6	7
Q, BT/cm ²	18,9	25,2	28,3	31,5	34,6	39,3	44,0
<i>t</i> , мин	120	60	30	20	13	6	3
Q_p , кВт/см ²	5,6	7,2	7,9	8,6	9,9	12,8	14,4
Примечание: Q – средняя плотность мощности разряда (т.е. в течение периода импульса); t – время							
осаждения; Q_p – максимальная импульсная плотность мощности разряда.							

ח	>		
Режимы	осаждения	YNOMORWY	ทกหานทาน
1 000000000	ocusicocnusi	<i>Apomooon</i>	nonpointin.

Результаты исследований. Данные по режимам осаждения покрытий (рис. 1) показывают, что зависимость скорости осаждения Сг покрытий от плотности мощности разряда – нелинейная, как результат увеличения эрозионного потока с поверхности мишени ввиду её сублимации дополнительно к распылению при плотности мощности, равной ~30 Bт/см². Максимальная импульсная плотность мощности разряда почти на 1 порядок больше средней плотности мощности.

Рис. 1. Зависимость скорости осаждения (v) хромовых покрытий и максимальной импульсной плотности мощности разряда (Q_p) от средней плотности мощности разряда (Q)

На рис. 2 представлена зависимость твёрдости хромовых покрытий, полученным с помощью метода Оливера-Фарра. Глубина проникновения индентора составляла 9-13% от толщины плёнок, чтобы исключить влияние подложки на измерения твёрдости покрытий. Из представленной зависимости видно, что в начале, при повышении средней плотности мощности до 28,3 Вт/см², происходит повышение твёрдости покрытий от 11 до 18 ГПа. Далее, при плотности мощности от 28,3 и выше (до 44 Вт/см²) твёрдость снижается до 4 ГПа. Подобное поведение твёрдости покрытий связано с изменением потока частиц, достигающих подложки, а также параметрами разряда (максимальной импульсной плотности мощности).

Рис. 2. Зависимость твёрдости Cr покрытий от средней плотности мощности разряда

Ввиду повышения скорости осаждения большая часть эрозионного потока, направленного от мишени к подложке, будет иметь низкую кинетическую энергию ввиду механизма его формирования (сублимации). Тем не менее, применение внешнего источника плазмы (РПГ-128), дополнительно используемого для ионизации атмосферы рабочей камеры, позволяет существенно повысить твёрдость хромовых покрытий (до 18 ГПа). Типичная твёрдость Сг покрытий, полученных магнетронным распылением, составляет 7-11 ГПа [3]. Твёрдость при максимальной плотности мощности (44 Вт/см²), когда эрозионный поток преимущественно формируется за счёт сублимации, равна 4 ГПа, что характерно для плёнок хрома, получаемых резистивным испарением [4].

Заключение. Исследования хромовых покрытий показали, что при повышении скорости осаждения за счёт сублимации мишени можно управлять их твёрдостью за счёт применения внешнего плазменного источника и приложения потенциала смещения. Получены плёнки хрома, с толщиной 1 мкм, твёрдость которых варьируется от 4 до 18 ГПа.

Исследование было выполнено за счёт средств фонда Fondazione Cariplo (проект №2020.1156 «Cutting tools regeneration by means of innovative vacuum plasma technologies»).

СПИСОК ЛИТЕРАТУРЫ

- Grudinin V.A., Bleykher G.A., Sidelev D.V., Yuriev Yu.N., Lomygin A.D., Magnetron deposition of chromium nitride coatings using a hot chromium target: Influence of magnetron power on the deposition rate and elemental composition // Surface and Coatings Technology. – 2022. – V. 433. – № 128120.
- Grudinin V.A., Sidelev D.V., Bleykher G.A., Yuriev Y.N., Krivobokov V.P., Berlin E.V., Grigoriev V. Yu, Obrosov A., Weiß S. Hot target magnetron sputtering enhanced by RF-ICP source for CrN_x coatings deposition // Vacuum. – 2021. – V. 191. – № 110400.
- Lin J., Moore J.J., Sproul W.D., Mishra B., Wu Z. Modulated pulse power sputtered chromium coatings // Thin Solid Films. – 2009. – V. 518. – Issue 5. – p. 1566–1570.
- Kataria S., Goyal S., Dash S., Tyagi A.K. Nanomechanical characterization of thermally evaporated Cr thin films — FE analysis of the substrate effect // Thin Solid Films. – 2010. – V. 519. – Issue 1. – p. 312–318.

37

УДК 621.385.64:621.793:60:65.47

СВОЙСТВА ПОКРЫТИЙ, СФОРМИРОВАННЫХ РЕАКТИВНЫМ ВЧ РАСПЫЛЕНИЕМ ГИДРОКСИАПАТИТА В СМЕСИ АЗОТА И ИНЕРТНЫХ ГАЗОВ

В.Р. Букал, А.Ю. Федоткин

Научный руководитель: доцент, к.ф.-м.н., С.И. Твердохлебов Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: vrb2@tpu.ru

PROPERTIES OF COATINGS FORMED BY REACTIVE HF SPUTTERING OF HYDROXYAPATITE IN A MIXTURE OF NITROGEN AND INERT GASES

V.R. Bukal, A.Y. Fedotkin

Scientific Supervisor: PhD, Assistant Professor, S.I. Tverdokhlebov Tomsk Polytechnic University, Russia, Tomsk, Lenin av., 30, 634050 E-mail: <u>vrb2@tpu.ru</u>

Abstract. Increasing the bioactivity of metal implants by the formation of calcium-phosphate coatings on their surface has become widespread. There are many publications on the topic of sputtering of calcium phosphate materials, including hydroxyapatite. However, very few publications describe the use of this method in reactive mode. In this work, we studied calcium phosphate coatings deposited in a mixture of nitrogen gases and various inert gases with equal volumetric concentrations.

Введение. Формирование кальций-фосфатных (КФ) покрытий на поверхности металлических имплантатов является распространенным способом повышения их биоактивности. Несмотря на наличие множества публикаций, посвященных высокочастотному магнетронному распылению (ВЧМР) КФ материалов и, в частности, гидроксиапатита (ГАП), опубликованы лишь единичные работы по теме использования данного метода в реактивном режиме. В данной работе исследовались КФ покрытия, осаждаемые в смеси азота и различных инертных газов при их одинаковых объемных концентрациях.

Экспериментальная часть. Осаждение КФ покрытий осуществлялось реактивным ВЧмагнетронным распылением ГАП при помощи универсальной магнетронной распылительной системы «Катод-1М». В процессе реактивного распыления использовались газовые смеси Ar и N₂, Xe и N₂, Ne и N₂. Подложки из титана (ВТ6) шлифовали и полировали на установке Unipol-802 (Zhengzhou TCH Instrument Co., Ltd, Чжэнчжоу, Китай). Все покрытия наносили на подложки при следующих параметрах: рабочее давление – 0,1 Па, мощность – 500 Вт, площадь мишени – 240,5 см², расстояние мишень– подложка – 45 мм, время – 3 ч, объемное соотношение инертный газ/азот – 1:1.

Результаты. На рис. 1 показана морфология исследуемых КФ покрытий. Все поверхности представлены скоплением зерен площадью 0,067 мкм², 0,012 мкм² и 0,01 мкм² для покрытий, сформированных в газовых смесях Ar+N₂, Xe+N₂ и Ne+N₂ соответственно. Зерна покрытия, сформированного в Ne+N₂, неоднородны, а покрытия, сформированные в Ar+N₂, Xe+N₂, характеризуются квазиравноосными зернами. Параметр R_a для покрытий, сформированных в Ar+N₂, Xe+N₂, Ne+N₂,

составляет 1,03 нм, 1,47 нм и 1,91 нм соответственно. Согласно полученным данным, размер зерна уменьшается, а средняя шероховатость увеличивается с увеличением атомной массы инертного газа в смеси инертный газ/азот.

Рис. 1. АСМ-изображения CaP-покрытий, сформированных в газовых смесях Ar и $N_2(a)$, Xe и $N_2(b)$, Ne и $N_2(b)$

В таблице 1 представлен элементный состав исследуемых покрытий. Са, Р и О соответствуют составу распылённой мишени ГАП. Благодаря малой толщине покрытий обнаруживаются элементы, соответствующие составу подложки (Ті и Al). Присутствие С можно объяснить следами органических растворителей. Согласно таблице, соотношение Ca/P уменьшается с увеличением атомной массы рабочего газа. При увеличении атомной массы рабочего газа наблюдается увеличение содержания кальция и снижение содержания кислорода в исследуемых покрытиях (табл. 1). Наличие различий между группами обусловлено разницей в массе между распыляемой и распыляющей частицей [1]. Следует также отметить, что покрытия, сформированные в смеси Ne+N₂, имеют наиболее близкое к стехиометрическому ГАП соотношение Ca/P.

Таблица 1

Образец	Ti	Ca	Р	0	С	Al	Ca/P
Ar+N ₂	61,86±0,88	1,09±0,13	0,92±0,25	24,85±1,83	5,08±0,77	6,2±0,28	1,21±0,17
Xe+N ₂	59,96±1,65*	1,28±0,14*	1,47±0,19*	25,09±2,57	5,93±0,8	6,27±0,34	0,89±0,14*
Ne+N ₂	56,87±0,75*	2,01±0,12*	1,33±0,11*	29,36±1,34*	4,93±1,26	5,5±0,25*	1,52±0,15*

Элементный состав покрытий (ат.%)

* - достоверная разница с группой Ar+N₂, p<0,05.

Рентгенофазовый анализ (не представлен) образцов показал, что все исследуемые покрытия имеют аморфную структуру. Единственные пики, обнаруженные в XRD-спектрах, соответствовали материалу подложки. Этот результат соответствует исследованию свойств покрытий, сформированных в смесях Ar+N₂ с различным объемным соотношением. В то же время исследование покрытий, сформированных в чистых Ne и Ar, выявило несколько пиков, соответствующих кристаллическому ГАП [2]. Можно сделать вывод, что присутствие азота в камере снижает кристалличность покрытий вплоть до аморфного состояния.

В таблице 2 представлена смачиваемость исследуемых покрытий. Покрытия, сформированные в Ne+N₂ и Xe+N₂, обладают лучшей смачиваемостью водой и спиртом, но хуже формамидом по сравнению с покрытиями, сформированными в Ar+N₂. Суммарная свободная энергия поверхности (СЭП) и её

полярная составляющая для этих покрытий также выше, чем эти параметры, рассчитанные для покрытий, сформированных в среде Ar+N₂. Можно предположить, что покрытия, сформированные в Ne+N₂ и Xe+N₂, обладают лучшей биосовместимостью, чем покрытия, сформированные в Ar+N₂, поскольку высокое значение полярной компоненты СЭП стимулирует клеточную адгезию [2].

Таблица 2

Образец	θ _в , град.	θ _с , град.	θ _φ , град.	σ, мДж/м²	σ ^д , мДж/м²	σ", мДж/м²
Ar+N ₂	71,7±0,95	7,9±0,37	25,3±1,88	34,40±0,24	6,71±0,07	27,66±0,18
Xe+N ₂	58,5±1,07*	3,8±2,15*	35,3±2,09*	45,57±0,77*	5,30±0,25*	40,28±0,52*
Ne+N ₂	59,4±3,14*	10,3±2,63	34,2±2,64*	50,19±1,20*	3,85±0,29*	46,33±0,91*

Краевой угол смачивания различными жидкостями

* - достоверная разница с группой Ar+N₂, p<0,05;

 $\theta_{\rm B}$ – краевой угол смачивания водой, $\theta_{\rm c}$ – краевой угол смачивания спиртом, θ_{ϕ} – краевой угол смачивания формамидом и СЭП (σ) КФ покрытия с его компонентами (σ^{π} – дисперсионная составляющая, $\sigma^{\rm n}$ – полярная составляющая).

Заключение. КФ покрытия осаждались на поверхности титановых подложек методом реактивного магнетронного распыления гидроксиапатита в смеси инертных газов и азота: $Ar+N_2$, $Xe+N_2$ и Ne+N₂. Тип инертного рабочего газа в смеси с азотом существенно влияет на свойства КФ покрытий. Увеличение атомной массы инертного рабочего газа уменьшает размер зерна и соотношение Ca/P, но увеличивает среднюю шероховатость покрытий. Рентгенофазовое исследование КФ покрытий выявило только пики, соответствующие материалу подложек. Можно предположить, что присутствие азота в камере снижает кристалличность покрытия вплоть до аморфного состояния. Покрытия, сформированные в Ne+N₂ и Xe+N₂, имеют более высокие значения суммарной СЭП и её полярной составляющей по сравнению с покрытиями, сформированными в Ar+N₂. Таким образом, свойства КФ покрытий, полученных реактивным ВЧ-магнетронным распылением в газовой смеси, можно изменять, меняя инертный газ.

Работа выполнена при поддержке программы развития ТПУ «Приоритет-2030» (проект № «Приоритет-2030-НИП/ИЗ-011-0000-2022»).

- Fedotkin A Y и др. Calcium phosphate coating deposition by radio frequency magnetron sputtering in the various inert gases: The pilot study // Materials Chemistry and Physics. – 2019. V. – 235. – P. 121735.
- Chrzanowski W и др. Effect of surface treatment on the bioactivity of nickel-titanium // Acta Biomater. - 2008. V. - 4. - P. 1969–84.

УДК 539.17

НЕКОГЕРЕНТНОЕ ФОТОРОЖДЕНИЕ НЕЙТРАЛЬНОГО ПИ-МЕЗОНА НА ДЕЙТРОНЕ НА ВЭПП-3

<u>Б.И. Василишин,</u> М.Я. Кузин

Научный руководитель: д.ф-м.н. В.В. Гаузштейн Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>togetherwithra@gmail.com</u>

INCOHERENT NEUTRAL PION PHOTOPRODUCTION ON DEUTERON AT VEPP-3 <u>B.I. Vasilishin,</u> M.Ya. Kuzin Scientific Supervisor: V.V. Gauzshtein Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: togetherwithra@gmail.com

Abstract. The work provides a description of the analysis of experimental statistics accumulated at the DEUTRON facility in 2013. The main difference between the setting of this experiment and the previous ones is the use of an electromagnetic calorimeter to detect two gamma quants from the decay of a neutral pion.

Введение. Экспериментальное изучение фоторождения пи-мезона на тензорно-поляризованном дейтроне к настоящему времени проводится только на внутренней тензорно-поляризованной мишени ускорительно-накопительного комплекса ВЭПП-3. Первые результаты измерения компонент тензорной анализирующей способности когерентного и некогерентного фоторождения нейтрального пиона были получены из экспериментальной статистики, накопленной в 2003 году и имели невысокую статистическую точность, поскольку эксперимент планировался для изучения фоторасщепления дейтрона. В 2013 году на ускорительно-накопительной колерентного фоторождения нейтрального пиона на дейтрона. В 2013 году на ускорительно-накопительном комплексе ВЭПП-3 был проведен эксперимент, основной целью которого было изучение когерентного фоторождения нейтрального пиона на дейтроне. Полученные результаты измерения T_{20} компоненты тензорной анализирующей способности реакции $\gamma d \rightarrow pn\pi^{\circ}$ опубликованы в работах.

Цель данной работы – представить новые методы анализа экспериментальной статистики для регистрации канала реакции некогерентного фоторождения пиона. В отличие от эксперимента, проведенного на ВЭПП-3 в 2003 году, в котором на совпадении регистрировались два нуклона, в настоящей работе на совпадении регистрировались протон и два гамма-кванта от распада нейтрального пиона. Использованная экспериментальная статистика была набрана в эксперименте, проведённом в 2013 году

Постановка эксперимента. Основным изучаемым каналом реакции, при постановке данного эксперимента, являлся канал когерентного фоторождения пиона, однако восстановление кинематических параметров пи-мезона по двум гамма-квантам позволило провести исследование некогерентного фоторождения пиона в реакции. На рис. 1 изображена схема эксперимента. Установка использует пучок электронов с энергией до 2 ГэВ с ускорительного комплекса ВЭПП-3.

Экспериментальная установка включает адронное плечо, оснащённое многопроволочными пропорциональными камерами для восстановления треков заряженных частиц, за которыми располагались несколько слоёв пластиковых сцинтилляторов, и пионное плечо, содержащие ветосчётчики заряженных частиц и электромагнитный калориметр, состоящий из кристаллов NaI(Tl) и CsI(Tl) для детектирования гамма квантов от распада π° -мезона. При анализе данных использовались события двухфотонного распада $\pi \rightarrow \gamma \gamma$, по которым восстанавливались кинематические параметры π -мезона. Более подробное описание установки и параметров детектирующей аппаратуры может быть найдено в работе [1].

Рис. 1. Общая схема эксперимента

Идентификация реакции. Условие регистрации на совпадение двух фотонов - потеря энергии в двух кластерах в одном событии. При этом под кластером понимается набор кристаллов CsI, расположенных рядом. При попадании гамма-кванта в калориметр вся энергия выделяется в ограниченном объеме – кластере. Необходимое условие для восстановления параметров нейтрального пиона - наличие двух кластеров. в которых произошло энерговыделение. При этом накладывается еще одно условие: отсутствие сигнала в вето-счетчике, что свидетельствует о пролете незаряженной частицы. Реконструкция параметров нейтрального пиона осуществляется по поглощенной энергии и углу между выделенными кластерами. Для идентификации событий, соответствующих регистрации пи-ноль мезона, по полученным данным восстанавливалась масса пиона. На рис 2 приведено распределение по восстановленной массе пиона. Также на этом рисунке приведено распределение по восстановленной массе пиона, полученной из моделирования эксперимента с использованием GEANT4 и генератора фотореакций GENBOS [2]. Довольно хорошее согласие между экспериментом и моделированием свидетельствует о правильности используемой методики восстановление параметров нейтрального пиона.

Рис. 2. Восстановленная масса пи-мезона. Точки – эксперимент, красная линия – моделирование. Зеленая линия – реакция γд→рпπ°, синяя –фоновые реакции

Для выделения протонов в верхнем детекторе, восстанавливалась масса частицы, зарегистрированной в одном из трех сцинтилляторов. Масса при этом восстанавливалась по времени пролета от мишени до первого сцинтиллятора и потерянной энергии в том сцинтилляторе, где частица остановилась.

Рис. 3. Восстановленная масса протона для трех сцинтилляторов. Обозначения для моделирования такие же, как и на рис. 2

Заключение. На рис. 3 приведены гистограммы распределения по восстановленной массе для трех сцинтилляторов. Хорошее согласие между результатами восстановления массы из экспериментальной статистики и моделирования с использованием GEANT4 и генератора фотореакций GENBOS дает возможность оценить вклад фоновых реакций в отобранную экспериментальную статистику. Для событий, где протон был зарегистрирован в первом сцинтилляторе фоновый вклад составляет 7.1%, для второго сцинтиллятора – 4.5%, для третьего – 9.3%.

Работа поддержана НИ ТПУ программой Приоритет-2030-НИП/ЭБ-001-0000-2022.

- 1. Gauzshtein V.V. et al. Measurement of a double spin asymmetry in the photoproduction of π - π -mesons on deuterons // European Physical Journal A 2018. V. 54 (10). P.167-172.
- Iljinov A.S. et al. Extension of the intranuclear cascade model for photonuclear reactions at energies up to 10 GeV // Nuclear Physics A – 1997. – V. 616. – P. 575-605.

УДК 539.2 669.295

ОСОБЕННОСТИ МИКРОСТРУКТУРЫ, ФАЗОВОГО И ЭЛЕМЕНТНОГО СОСТАВА СПЛАВА TI-NB-ZR-TA, ИЗГОТОВЛЕННОГО МЕТОДОМ ЭЛЕКТРОННО-ЛУЧЕВОГО ПЛАВЛЕНИЯ

<u>А.П. Волкова</u>, Д. Храпов, И.Ю. Грубова Научный руководитель: к.ф.-м.н М.А. Сурменева Национальный исследовательский Томский политехнический университет Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>anastasiavolkova17298@gmail.com</u>

FEATURES OF MICROSTRUCTURE, PHASE AND ELEMENTAL COMPOSITION OF TI-NB-ZR-TA ALLOY PRODUCED BY ELECTRON BEAM MELTING

<u>A.P. Volkova</u>, D. Khrapov, I.Yu. Grubova Scientific supervisor: PhD M.A. Surmeneva Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: anastasiavolkova17298@gmail.com

Abstract. Present work describes the fabrication of a low modulus β -Ti alloy, Ti-35Nb-7Zr-5Ta (TNZT), by electron beam melting (EBM) with optimized laser parameters. The physical and mechanical performance of the as-printed TNZT has been examined and is correlated to the microstructure (phase and elemental composition). The results indicate the titanium alloy exhibited a microstructure consisting of bcc beta phases. The elemental composition corresponds to the mass content of the Ti-35Nb-7Zr-5Ta alloy.

Введение. В настоящее время разработка бета титановых сплавов является перспективным направлением исследований в области создания биомедицинских материалов с заданными свойствами. В последние годы большой интерес вызывают сплавы системы Ti-35Nb-7Zr-5Ta (TNZT), благодаря уникальному сочетанию приемлемой прочности и низкого модуля упругости (55 ГПа), что является важным требованием, предъявляемым к конструкциям высоконагруженных имплантатов [1]. Электроннолучевое плавление (ЭЛП) является одним из самых перспективных методов производства титановых сплавов, позволяющих получать образцы различной структуры и пористости, что приводит к хорошим физико-механическим свойствам. Однако при воздействии электронного луча на образец образуется градиент температур, оказываемый влияние на структуру изготавливаемых сплавов и образование тех или иных фаз. В связи с этим появляется необходимость следить за стабильностью исследуемых образцов. Исходя из этого, целью исследования являлась оценка элементного и фазового состава TNZT.

Материалы и методы исследования. Исследуемые образцы TNZT изготавливались из предварительно легированного порошка сферической формы (Tosh SMD Inc. Гроув-Сити, Пенсильвания, США), на установке Arcam EBM S12 (Стокгольм, Швеция) методом электронно-лучевого плавления (ЭЛП). При подготовке образцов были заданы следующие параметры печати ЭЛП: δ =100 мкм, T=520-610°C, I=3 мA, v=407 мм/c, h=0,1 мкм, E_A =4,4 Дж/мм², используемые в работе [2] и показавшие наилучшие физико-механические характеристики изготовленных образцов. Подготовка образцов титанового сплава проводилась на шлифовально-полировальной машине (Saphir 320, ATA, Mammelzen,

Germany). В связи с этим образцы были инкапсулированы в эпоксидную смолу (Technovit EPOX, Heraeus Kulzer, Wehrheim, Germany) для облегчения обращения с ними в процессе шлифовки и полировки. Титановые сплавы подвергались полировке с водяным охлаждением, дисками из карбида кремния зернистостью # 320, 600, 800, 1200 и 2000. Давление притирки составляло 10-20 кПа, а продолжительность варьировалась от 2 до 3 минут на каждом диске. Далее перед обработкой ионным пучком (Quanta 200 3d FEI Company, USA) поверхность образцов механически полировалась до зеркального блеска одним миллилитром суспензии коллоидного кварца col-k (nc) с дисперсностью частиц 0,06 мкм в качестве завершающего этапа полировки.

Исследование морфологии поверхности и структуры сплава проводилось методом энергодисперсионного анализа (ЭДРА) на микроскопе с катодом Шоттки Tescan MIRA 3 LMU (TESCAN ORSAY HOLDING, Brno, Czech Republic). Фазовый состав сплава TNZT оценивали с помощью измерения дифракции рентгеновских лучей (XRD) на рентгеновском дифрактометре Shimadzu XRD-7000S, ($\lambda = 1,5406$ Å, напряжение = 40 кB, ток = 30 мА) в диапазоне 20 от 10 до 90°, скорость сканирования составляла 10°/мин.

Результаты. На рисунке 1 представлены рефлексы, полученные с помощью рентгеновской дифракции.

Рис. 1. Результаты РФА сплава TNZT, изготовленного методом ЭЛП

На рисунке 1 представлены рентгенограммы сплава TNZT изготовленного методом ЭЛП. Исследуемый сплав имеет четыре основных рентгеновских пика в плоскостях (110), (200), (211) и (220), которые соответствуют β фазе Ti с ОЦК структурой, имеющей следующие параметры решетки: а = 3,2958 Å.

Рис. 2. ЭДРА образца сплава TNZT

Исследование количественного элементного состава образца показало композиционную однородность в соответствии с номинальным составом сплава с массовым % содержанием Ti 54,68 %, Nb 33,77 %, Zr 6,82 % и Zr 4,73 %.

Рис. 3. СЭМ-изображения SE (a), BSE (b) и картирование легирующих элементов Ti (c), Zr (d), Nb (e) и Ta (f) для исследуемого образца TNZT

На рисунке 3 представлены СЭМ изображения с SE и BSE детекторов, а также ЭДРАкартирование Ti, Nb, Zr и Ta для сплава TNZT. Как мы видим, на рисунке (а) и (б) структура образцов достаточно однородна, в сплаве имеется некоторое количество пор размером от 5 до 12 мкм и небольшое количество нерасплавленных частиц порошка (размер 40–70 мкм). Результаты СЭМ/ЭДРА для объемного сплава TNZT (в-е) показали наличие трех областей светло-серая, серая и темно-серая, серая область на СЭМ характеризует матрицу с равномерно распределенными элементами, темно-серые области, обогащенные такими элементами как Zr-Ti, междендритная область, состоящая из большого количества Ti, и светло-серая область дендритов с высокой концентрацией Ta.

Заключение. В ходе работы из β – порошков TNZT с помощью метода ЭЛП были получены образцы β -титанового сплава, фазовый и элементный состав которых соответствует Ti-35Nb-7Zr-5Ta. Результаты проведения ЭДРА показали присутствие таких элементов, как Ti,Nb, Zr и Ta с массовым % содержанием Ti 54,68 %, Nb 33,77 %, Zr 6,82 % и Zr 4,73 %, они являются основными компонентами сплава, из которого изготовлены исследуемые образцы, что говорит о том, что метод ЭЛП позволяет поучать образцы с составом исходного порошка, не меняет состав. Дифракционные картины рентгеновских лучей показали пики в плоскостях (110), (200), (211) и (220), что говорит об отсутствии нежелательных фаз и соответствует наличию β – фазы ОЦК.

Работа выполнена при финансовой поддержке гранта РНФ 20-73-10223. При использовании оборудования Томского регионального центра коллективного пользования ТГУ. Автор выражает благодарность Иванову E. (Tosoh SMD Inc., USA) за предоставленный порошок TNZT, профессора и кандидата физико-математических наук Коптюга А.В. за изготовление образцов.

- Taddei E.B. Production of new titanium alloy for orthopedic implants // Materials Science and Engineering -2004. – V. 24(5). – P. 683-687.
- Surmeneva M. New Ti-35Nb-7Zr-5Ta alloy manufacturing by electron beam melting for medical application followed by high current pulsed electron beam treatment //Metals. - 2021. - V. 11 (7). - P. 1066.

УДК 539.4

ВЛИЯНИЕ ДЛИТЕЛЬНОСТИ АЗОТИРОВАНИЯ НА СТРУКТУРНЫЕ И ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА СТАЛИ 40X13 ПРИ ДУПЛЕКСНОЙ ОБРАБОТКЕ

Е.Д. Воронина

Научный руководитель: доцент, к.т.н. Д.В. Сиделёв Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>edv2@tpu.ru</u>

INFLUENCE OF NITRIDING DURATION ON STRUCTURAL AND FUNCTIONAL PROPERTIES OF AISI 420 STAINLESS STEELS UNDER DUPLEX TREATMENT

E.D. Voronina

Scientific Supervisor: Assistant Professor, PhD D.V. Sidelev Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: edv2@tpu.ru

Abstract. This article describes the study of a role of plasma nitriding on structural and functional properties of AISI 420 steel with CrAlN coating obtained by magnetron sputtering. Plasma nitriding results in forming nitrogen-stabilized ferritic α -Fe phase and solid solutions based on iron nitrides (ε -Fe₂₋₃N, γ' -Fe₄N). The hardness of the deposited CrAlN film increases over its thickness under duplex plasma treatment. The increase in microhardness of steel leads to improvement in adhesion strength of CrAlN coating.

Введение. Стали с высоким содержанием хрома широко применяются в промышленном секторе в качестве материалов для деталей и конструкционных узлов, работающих в условиях агрессивных сред. Этот класс сталей обладает высокой коррозионной стойкостью, но низкая микротвёрдость и износостойкость сильно ограничивают область их применения [1]. Для повышения функциональных свойств изделий из сталей часто применяют физические и химико-термические методы обработки поверхности, среди которых особо выделяются методы нанесения покрытий [2]. Ввиду большого разнообразия осаждаемых материалов, возможно получение плёнок с необходимыми механическими, защитными, барьерными и другими свойствами. Однако серьёзная проблема состоит в адгезионной прочности осаждаемых покрытий, для достижения которой обязательно требуется предварительная обработка изделий, напр., ионная бомбардировка в инертной среде. Немаловажным фактором оказывается влияние разницы между механическими свойствами наносимого покрытия и материала подложки, ввиду которой может быть сильно снижена адгезия. Существенно улучшить межфазную адгезию возможно, изменив механические параметры поверхности материала перед осаждением на него покрытия. Для этого можно использовать методы вакуумного ионно-плазменного азотирования, напр., с использованием плазмы высокочастотного (ВЧ) разряда [3]. Комбинация процессов азотирования и последующего нанесения покрытия – дуплексная технология обработки поверхности. Цель настоящей работы – определить роль параметров ВЧ азотирования на адгезионную прочность осаждаемых покрытий при дуплексной технологии обработки.

47

Экспериментальная часть. В качестве материала подложки выбрана сталь марки 40x13. Образцы имеют форму диска с размерами $Ø25x5 \text{ мм}^2$. Процесс ионно-плазменного азотирования проводился при температуре 470 °C при давлении 0,8 Па с различной длительностью (10, 20, 40 и 60 мин). В вакуумную камеру подавалась смесь газов (Ar, N₂ и H₂) с общим потоком 102,5 см³/мин в соотношении 5:3:2, соответственно. В процессе ВЧ азотирования на образцы прикладывался потенциал электрического смещения, равный - 80 В. Далее выполнялась бомбардировка поверхности образцов ионами аргона в течение 20 мин при ускоряющем напряжении на ионном источнике, равном 2,5 кВ. Потом происходило трёхэтапное осаждение плёнки CrAIN с помощью магнетронного распыления мишеней из хрома и алюминия в смеси аргона и азота при давлении 0,35 Па. Первый этап - создание металлического подслоя при мощности, подаваемой на Cr мишень, равной 2,5 кВт и потенциале смещения на образце -300 \rightarrow -50 В. Второй этап - создание градиентного покрытия с постепенным увеличением потока N₂ от 2,3 до 13,5 см³/мин с шагом по времени 2 мин. Третий этап – осаждение CrAIN покрытия.

Результаты исследований. При исследовании кристаллической структуры методом рентгеновской дифракции (рис. 1) в образце, не подвергшемся ВЧ азотированию, обнаружена фаза феррита (α -Fe). В азотированных образцах обнаружены фазы азотистого аустенита (γ_N -Fe), а также твёрдых растворов на базе нитридов железа (ϵ -Fe₂₋₃N и γ' -Fe₄N). Определены фазы нитридов хрома (CrN) и алюминия (AlN), свидетельствующие об их присутствии в осажденном покрытии.

Рис. 1. Рентгеновские дифрактограммы образцов из стали 40x13 (БА) без и с азотированием в течение (A10) -10, (A20) – 20, (A40) – 40, (A60) - 60 минут с последующим осаждением CrAlN покрытия

Твёрдость поверхности всех образцов с учётом полученной погрешности приблизительно равна и соответствует значениям, типичным для покрытий типа CrAlN [2] (рис. 2, *a*). При увеличении нагрузки, подаваемой на индентор (от 10 до 250 мН), прослеживается влияние микротвёрдости подложки на твёрдость осажденного покрытия. Твёрдость осажденной плёнки, полученной на образцах после ВЧ азотирования, практически постоянная. На образце без предварительной обработки при нагрузке 100 мН наблюдается резкий спад твёрдости плёнки до значения, близкого к микротвёрдости стали.

Рис. 2. (а) Зависимость твёрдости поверхности от глубины проникновения индентора при различной длительности ВЧ азотирования образцов. (б) Зависимость адгезионной прочности покрытия от времени ВЧ азотирования: LC1- нагрузка при образовании первой трещины в покрытии; LC2 – нагрузка, при которой происходит скалывание покрытия; LC3 – нагрузка, когда происходит отслоение

покрытия)

Измерения адгезионной прочности образцов показали влияние длительности ВЧ азотирования. Образец, не подвергавшийся ВЧ азотированию, обладает низкой адгезионной прочностью между осаждённым покрытием и подложкой, наблюдается растрескивание, скол и отслоение покрытия (рис. 2, *б*). При применении ВЧ азотирования и увеличении его длительности увеличивается нагрузка, при которой происходит растрескивание покрытия, что объясняется увеличением несущей способности поверхностного слоя стали, полученной в результате ВЧ азотирования [4].

Заключение. В результате дуплексной обработки поверхности стали 40x13 получено, что предварительное ВЧ азотирование способствует улучшению адгезионной прочности покрытия CrAlN.

- Golański G., Purzyńska H. Effect of service on microstructure and mechanical properties of Nb-stabilised austenitic stainless steel // International Journal of Pressure Vessels and Piping. – 2022. – V. 195. – C. 104574.
- Wang Y.X. et al. Influence of bias voltage on the hardness and toughness of CrAIN coatings via magnetron sputtering // Surface and Coatings Technology. – 2012. – V. 206 (24). – P. 5103-5107.
- Сиделёв Д.В., Воронина Е.Д., Кожина О.И., Грудинин В.А., Столбовская Г.Н., Азотирование стали 40х13 в индуктивно-связанной плазме: влияние потенциала смещения // Успехи прикладной физики. – 2022. – отправлено в печать.
- Das K. et al. Influence of pretreatment on surface behavior of duplex plasma treated AISI H13 tool steel // Surfaces and Interfaces. – 2017. – V. 8. – P. 206-213.

УДК 538.9

ОСАЖДЕНИЕ ПЛЁНОК ОКСИДА МЕДИ ПРИ МАГНЕТРОННОМ РАСПЫЛЕНИИ В МЕТАЛЛИЧЕСКОМ РЕЖИМЕ

Е.Д. Воронина, Д.В. Сиделёв

Научный руководитель: доцент, к.т.н. Д.В. Сиделёв Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>edv2@tpu.ru</u>

FILM DEPOSITION OF COPPER OXIDE USING MAGNETRON SPUTTERING IN A METALLIC MODE

E.D. Voronina, D.V. Sidelev Scientific Supervisor: Assistant Professor, PhD D.V. Sidelev Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: edv2@tpu.ru

Abstract. This article describes the possibility of film deposition of copper oxide using magnetron sputtering in $Ar+O_2$ operating in a metallic mode. To do this, hysteresis of discharge voltage was obtained at constant (20 sccm) Ar and variable (100 sccm) O_2 gas flows, with and without using additional radio-frequency plasma source RPG-128. Then, CuO_x films were obtained in metallic modes of magnetron sputtering of copper target at a discharge power of 1000 and 2000 W. These films were investigated by X-ray diffraction to determine its crystal structure.

Введение. В настоящее время особое значение для современных производств имеют покрытия на основе химических соединений, например, оксиды, нитриды металлов или их композиции, полученные с помощью магнетронного распыления. Однако в случае добавления реакционного газа (напр., О2) в процесс магнетронного распыления происходит его взаимодействие с поверхностью распыляемой мишени, ввиду чего могут значительно изменяться эмиссионные характеристики поверхности такой мишени (коэффициент распыления, коэффициент вторичной эмиссии электронов и др.) [1]. С другой стороны, для формирования покрытия сложного состава с заданной стехиометрией требуется обеспечить определённое соотношение потоков металлических атомов и ионов/атомов реакционного газа на поверхность изделия. Обычно такое соотношение потоков становится оптимальным в так называемом режиме «окисленной» мишени, когда мишень полностью покрыта слоем химического соединения. В зависимости от вида материала мишени и реакционного газа уменьшение скоростей распыления и осаждения может достигать до 1 порядка и более (напр., для системы алюминий-кислород или алюминий-азот). Для решения вышеуказанной проблемы предлагается разделить процессы распыления мишени и конденсации покрытия на поверхности изделия. Причём требуется организовать разделение процессов по виду (составу) атмосферы. Распыление материала мишени необходимо осуществлять только в инертной среде (напр., в аргоне), т.е. в металлическом режиме (когда мишень полностью свободна от химического соединения), тогда зависимость эмиссионных характеристик материала мишени от напряжения разряда (и/или

мощности) имеет практически линейный вид. Это даёт возможность гибкого управления процессом (величиной потока распылённых частиц, достигающих подложки) путём варьирования напряжения/мощности разряда. Конденсация покрытия должна происходить в реактивной среде (напр., в кислороде). Реакционная способность газа, а также кинетика его сорбции, десорбции и диффузии очень сильно зависят от состояния газа (атомарный/молекулярный). Поэтому потребуется использовать дополнительный (внешний) источник плазмы для диссоциации и/или ионизации газовой среды, т.к. подаваемый в камеру реакционный газ исходно находится в молекулярном состоянии [2].

В настоящей работе, на примере системы медь-кислород, рассматривается возможность получения плёнок оксида меди с помощью магнетронного распыления в среде аргона и кислорода при работе в режиме распыления металлической мишени.

Экспериментальная часть. В работе была использована вакуумная ионно-плазменная установка, разработанная в научно-образовательном центре Б.П. Вейнберга Томского политехнического университета, её детальное описание представлено в [2]. Применялась дисковая магнетронная распылительная система (МРС) с медной (99,95%) мишенью, диаметром 90 мм и толщиной 8 мм. Использовался источник питания постоянного тока APEL-M-5PDC, параметры импульса были следующие: частота - 80 кГц, коэффициент заполнения – 76%. В эксперименте в качестве внешнего источника плазмы использовался радиочастотный плазменный генератор РПГ-128 (ООО "Лаборатория вакуумных технологий плюс" [3]), его мощность была 1 кВт. При исследовании гистерезиса процесса распыления медной мишени поток аргона в камеру был постоянным (20 см³/мин), поток кислорода – варьировался в широком диапазоне (0-100 см³/мин). Для получения СиО_х покрытий использовались подложки из стали 12Х18Н10Т, к ним прикладывался потенциал электрического смещения, равный -70 В. Использовалось планетарное вращение подложек в процессе получения СиО_х покрытий, мощность разряда магнетрона составляла 2 и 1 кВт, время осаждения – 30 и 60 мин, соответственно.

Результаты исследований. Первоначально было выполнение определение гистерезиса напряжения разряда МРС в зависимости от направления подачи рабочего (аргона) и реактивного (кислорода) газов, с/ без применения РПГ (рис. 1).

Рис. 1. Кривые гистерезиса напряжения разряда при магнетронном распылении медной мишени при мощности разряда магнетрона (1) 1 и (2) 2 кВт: а – при раздельной подаче газа и применении РПГ-128; б - при раздельной подаче газа и без применения РПГ-128; в – без раздельной подачи газа и без применения РПГ-128

По кривым гистерезиса можно определить 3 режима распыления мишени МРС, типичных при использовании реактивного газа: металлический, переходный и реактивный. Видно, что при увеличении

мощности MPC от 1 до 2 кВт, границы перехода режима из металлического в переходный и/или реактивный сдвигаются в область более высоких значений потоков кислорода. Применение РПГ-128 как дополнительного внешнего источника плазмы имеет обратный эффект, но он крайне незначительный. Разделение газов по направлению их подачи в камеру оказывает заметное влияние только при распылении медной мишени с мощность 1 кВт.

Были выбраны 3 режима осаждения покрытий при работе МРС в металлическом режиме (рис. 2).

Рис. 2. Дифрактограммы образцов покрытия CuO_x на подложках из стали 12x18н10т при мощности магнетронной распылительной системы и потоке O₂: 0 – подложка без покрытия; 1 – 2 кВт и 54 см³/мин; 2 - 2 кВт и 27 см³/мин; 3 - 1 кВт и 20 см³/мин

Идентифицированы фазы CuO и Cu₂O в полученных CuO_x покрытиях, фаза Cu не обнаружена. Из рис. 2 видно, что интенсивность фаз CuO(110) и CuO(220) заметно выше для покрытия, осаждение которого проводилось при мощности 1 кВт, чем при мощности 2 кВт. Формирование фазы Cu₂O (111) идентифицирована для образца, полученного при потоке O_2 , равном 27 см³/мин. Последнее показывает то, что фазовым составом покрытия на основе оксидов можно управлять, изменяя поток кислорода.

Заключение. В настоящей работе показана принципиальная возможность получения плёнок оксидов металлов на примере CuO_x с использованием магнетронных распылительных систем, работающей в металлическом режиме в среде смеси аргона и кислорода.

Исследование выполнено за счёт гранта Российского научного фонда № 22-29-01173.

- Берлин Е.В., Коваль Н.Н., Сейдман Л.А. Плазменная химико-термическая обработка поверхностей стальных деталей. — М.: Техносфера, 2012. – 464 с.
- Grudinin V.A., Sidelev D.V., Bleykher G.A., Yurjev Y.N., Krivobokov V.P., Berlin E.V., Grigoriev V.Y., Obrosov A., Weiß S., Hot target magnetron sputtering enhanced by RF-ICP source for CrN_x coatings deposition // Vacuum. -2021. - V. 191. - P.110400.
- 3. Patent 9704691 US. Plasma generator / Berlin E.V., Grigoryev V.J. Published 2017.7.11.

УДК 53.072

УСТАНОВКА ДЛЯ ОПТИЧЕСКОЙ СПЕКТРОСКОПИИ ВАН-ДЕР-ВААЛЬСОВЫХ ГЕТЕРОСТРУКТУР С ПРОСТРАНСТВЕННЫМ РАЗРЕШЕНИЕМ

<u>А.А. Галиуллин</u>, М.В. Кравцов, Н.К. Журбина Научный руководитель: профессор, д.ф.-м.н. А.Ю. Кунцевич Национальный исследовательский университет «Высшая школа экономики», Россия, г. Москва, Покровский бульвар, д. 11, 109028

E-mail: 1233550v@mail.ru

A SETUP FOR SPATIALLY RESOLVED OPTICAL SPECTROSCOPY OF VAN DER WAALS HETEROSTRUCTURES

<u>A.A. Galiullin</u>, M.V. Kravtsov, N.K. Zhurbina Scientific Supervisor: Prof., Dr. A.Y. Kuntsevich HSE University, Russia, Moscow, 11 Pokrovsky Bulvar, 109028 E-mail: 1233550v@mail.ru

Abstract. Layered two-dimensional materials as a rule are grown or exfoliated as small (~10 μ m lateral dimension) flakes. Their thickness crucially affects the optical properties. The latter have to be explored using spatially resolved spectroscopy. The entry threshold in this field is believed to be rather high due to expensive lasers, micro-objectives and spectrometers. On the other side recently some of the components has become relatively cheap and easily available from the common internet trading platforms. In this report we demonstrate our cheap table-top optimized system for studies of Raman, reflectance and photolumescence spectra with spatial resolution.

Введение. Межслоевые взаимодействия в слоистых материалах и их ван-дер-ваальсовых гетероструктурах сильно влияют на электронные и фононные степени свободы, что проявляется в оптических спектральных свойствах, см. обзор [1]. В области двумерных материалов становится обязательным доступ к спектрам отражения, комбинационного рассеяния света, фото- и электролюминесценции (ФЛ и ЭЛ) с микронным пространственным разрешением. Аналогичные установки необходимы для наблюдения при помощи спектра комбинационного рассеяния фазовых переходов, индуцированных давлением в ячейках с алмазными наковальнями, которые недавно позволили достичь сверхпроводимости при комнатной температуре [2]. Коммерчески доступные системы для таких измерений с необходимым функционалом удобны, но довольно дороги: стоимость подобной установки начинается от 100 тысяч долларов (см., например, [3-5] и др.). Высокая цена обусловлена добавленной стоимостью, необходимой для обеспечения надежности и универсальности этих установок. В дорогом коммерческом аппарате существенное количество функций может выйти из строя, а некоторые специфические функции могут отсутствовать. Таким образом, перед многими лабораториями стоит задача сборки спектромикроскопа из отдельных компонентов по доступной цене. В этой докладе мы делимся нашим опытом сборки микроскопа с коррекцией на бесконечность в сочетании с лазерным освещением и спектроскопией. Несмотря на то, что подобные установки уже неоднократно

собирались [6-8], развитие интернет-трейдинга и доступность различных компонент позволяют оптимизировать схему и значительно удешевить её, резко уменьшив тем самым порог входа. Подчеркнем, что наша установка достаточно универсальна: она охватывает спектроскопию комбинационного рассеяния, отражения и люминесценции, а также может быть использована в режиме возбуждения для картирования фотопроводимости, фототока и фотоЭДС, а также для литографии.

Экспериментальная часть.

Рис. 1. (а) Принципиальная схема оптического спектрометра с пространственным разрешением. СП1 и СП2 обозначают два переключаемых спектрометра. (б) Оптическая схема микроскопа с двумя турелями. (в) Фотография установки

Была собрана установка, схема и фотография которой указаны на рис. 1.

Результаты. Для проверки работоспособности спектрометра использовался советский монохроматор ДМР-4 и лавинный фотодиод, помещённый на выходную щель монохроматора. Спектрометр калибровался по спектру люминесцентной лампы и калиброванного спектрометра. На нашей установке получилось сфокусировать лазерное пятно в область диаметром 10 мкм и пронаблюдать пик спектра комбинационного рассеяния алмаза (см. рис. 2).

Таблица 1

Лазер [9]	Нотч фильтр	Спектрометр	Объектив	Поворотная	Камера	XYZ-платформа
	[10]	[11]	[12]	турель [13]	[14]	[15]
1 000\$	1 000\$	400\$	100\$	15\$	30\$	100\$

Стоимость компонентов системы и ссылки на них

Рис. 2. Спектр алмазной пыли, измеренный при помощи монохроматора ДМР-4 и лавинного фотодиода

Заключение. В данной работе продемонстрирована работоспособная недорогая (~2700\$, см. табл. 1) схема измерения спектров двумерных материалов. Схема требует дальнейшей доработки, но уже может быть полезна другим лабораториям для снятия спектров двумерных материалов.

СПИСОК ЛИТЕРАТУРЫ

- Dong X et. al, Microscale spectroscopic mapping of 2D optical materials // Adv. Opt. Mater. 2019. Vol. 7, Iss.18. – P. 1900324.
- Snider E. et. al, Room-temperature superconductivity in a carbonaceous sulfur hydride // Nature. 2020. Vol. 586. – P. 373-377.
- 3. Renishaw [Электронный ресурс]. Режим доступа: https://clck.ru/eBZbS. (дата обращения: 02.04.2022)
- 4. WiTek [Электронный ресурс]. Режим доступа: https://clck.ru/eBZbd. (дата обращения: 02.04.2022)
- 5. PicoQuant [Электронный ресурс]. Режим доступа: https://clck.ru/eBZbA. (дата обращения: 02.04.2022)
- Kasai J., Katayama Y., A high spatial resolution in low-temperature microphotoluminescence with far-field optics // Review of Scientific Instruments. – 1996. – Vol. 67. – P. 4397.
- Finnie P., Ouyang J., Lefebvre J., Full Spectrum Raman Excitation Mapping Spectroscopy // Scientific Reports. – 2020. – Vol. 10. – P. 9172.
- Kiselev R. et. al, Design and first applications of a flexible Raman micro-spectroscopic system for biological imaging // Biomedical Spectroscopy and Imaging. – 2016. – Vol. 5. P. 115-127.
- 9. Aliexpress [Электронный ресурс]. Режим доступа: https://clck.ru/c6jgo. (дата обращения: 02.04.2022)
- 10. Azimp [Электронный ресурс]. Режим доступа: https://clck.ru/c6kJN. (дата обращения: 02.04.2022)
- 11. Thunder Optics [Электронный ресурс]. Режим доступа: https://clck.ru/dT6MA. (дата обращения: 02.04.2022)
- 12. Aliexpress [Электронный ресурс]. Режим доступа: https://clck.ru/dT6zp. (дата обращения: 02.04.2022)
- 13. Aliexpress [Электронный ресурс]. Режим доступа: https://clck.ru/dT665. (дата обращения: 02.04.2022)
- 14. Aliexpress [Электронный ресурс]. Режим доступа: https://clck.ru/dTEVQ. (дата обращения: 02.04.2022)
- 15. Aliexpress [Электронный ресурс]. Режим доступа: https://clck.ru/dT7Ho. (дата обращения: 02.04.2022)

55

УДК 621.793.79:620.178.151.6

ВЛИЯНИЕ ПАРАМЕТРОВ МАГНЕТРОННОГО РАСПЫЛЕНИЯ НА МИКРОСТРУКТУРУ И МЕХАНИЧЕСКИЕ СВОЙСТВА ПОКРЫТИЙ Ti-Al-Ta-N

<u>Ю.А. Гаранин</u>^{1,2}, Е.Д. Кузьминов²

Научный руководитель: д.ф.-м.н. А. Р. Шугуров^{1,2}

¹Национальный исследовательский Томский политехнический университет,

Россия, г. Томск, пр. Ленина, 30, 634050

²Институт физики прочности и материаловедения СО РАН,

Россия, г. Томск, пр. Академический, 2/4, 634055

E-mail: jorge.r2448@gmail.com

INFLUENCE OF PARAMETERS OF MAGNETRON SPUTTERING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ti-Al-Ta-N COATINGS

Yu.A. Garanin^{1,2}, E. D. Kuzminov²

Scientific Supervisor: Dr. A.R. Shugurov^{1,2}

¹Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050

²Institute of Strength Physics and Materials Science SB RAS, Russia, Tomsk, Akademichesky av. 2/4, 634055 E-mail: jorge.r2448@gmail.com

Abstract. The microstructure and mechanical properties of Ti-Al-Ta-N coatings obtained by DC and pulsed magnetron sputtering are investigated. It is shown that the coatings deposited in the pulsed regimes are characterized by denser mixed microstructure with columnar and equiaxed grains compared with the columnar DC coating. The changes in the microstructure are found to provide increased mechanical properties of the coatings obtained in the pulsed regimes.

Введение. Несмотря на интенсивное развитие современного материаловедения, проблемы трения и износа, возникающие при эксплуатации деталей и механизмов, работающих в условиях высоких фрикционных нагрузок, по-прежнему, остаются очень актуальными. На сегодняшний день одним из основных методов повышения износостойкости материалов является модификация их поверхности путем нанесения на изделия износостойких защитных покрытий. Среди большого многообразия используемых композиций перспективными являются покрытия системы Ti-Al-Ta-N, которые обладают повышенными трещиностойкостью, термической стабильностью, стойкостью к окислению и износостойкостью [1]. Однако известно, что свойства покрытий существенно зависят от метода их нанесения на подложку. В настоящее время основными методами нанесения покрытий Ti-Al-Ta-N является ионно-плазменное напыление и магнетронное распыление. При этом магнетронное распыление покрытий Ti-Al-Ta-N, как правило, осуществляется при постоянном токе. В то же время было показано, что технология импульсного магнетронного распыления позволяет получать покрытия на основе нитридов переходных металлов с улучшенными свойствами [2]. Данный метод позволяет обеспечить более высокую степень ионизации

распыляемого материала, способствуя повышению плотности ионного потока и энергии осаждаемых ионов. Это приводит к уплотнению структуры покрытий, обусловливая повышение их твердости, адгезии к подложке и износостойкости, по сравнению с аналогичными покрытиями, полученными магнетронным распылением при постоянном токе. При этом характеристики покрытий существенно зависят от материала мишени и параметров осаждения. Целью данной работы является исследование микроструктуры и механических свойств покрытий, полученных в различных режимах магнетронного распыления.

Экспериментальная часть. Покрытия Ti-Al-Ta-N наносили на подложки из стали марки 12X18H10T методом реактивного магнетронного распыления на установке МИР-1М с помощью двух магнетронов с мишенями TiAl (50/50 ат.%) и Ta (99,9 ат.%). Процесс нанесения происходил в среде из смеси газов аргона и азота при общем давлении в рабочей камере 0,3 Па. Магнетроны были обеспечены отдельными источниками питания, что позволило задавать режим работы индивидуально для каждого магнетрона. В режиме 1 оба магнетрона работали на постоянном токе. В режиме 2 на оба магнетрона подавали импульсный ток с частотой 60 кГц. В режиме 3 на мишень TiAl подавали постоянный ток, а на мишень Ta импульсный. В режиме 4, напротив, постоянный ток подавали на мишень Ta, а импульсный – на мишень TiAl. Длительность положительного и отрицательного импульсов в режиме импульсного распыления были равны 3 и 14 мкс соответственно. Толщина покрытий составляла 3 мкм. Элементный состав покрытий Ti-Al-Ta-N определяли методом рентгеновской энергодисперсионной спектроскопии на сканирующем электронном микроскопе EVO 50 с помощью детектора INCA X-act. Структуру и фазовый состав покрытий исследовали методом рентгеновской дифракции на дифрактометре Shimadzu. Твердость H и приведенный модуль упругости E* определяли методом наноиндентирования на установке NanoTest при максимальной нагрузке 20 мH.

Результаты. Анализ дифрактограмм (рис. 1) показал, что все исследованные покрытия Ti-Al-Ta-N имеют ГЦК структуру типа NaCl (B1), то есть представляют собой твердый раствор, в котором Al и Ta частично замещают Ti в кристаллической решетке TiN. Все покрытия демонстрируют преимущественную ориентацию (111), при этом степень текстуры больше у покрытий, нанесенных при работе магнетрона TiAl в импульсном режиме. Как видно из рис. 1, у покрытий, полученных с использованием импульсного распыления, наблюдается существенное уширение пиков Ti-Al-Ta-N, по сравнению с покрытием, полученным при постоянном токе. Это указывает на уменьшение областей когерентного рассеивания и развитие сильных микронапряжений в покрытиях, полученных импульсным магнетронным распылением.

Рис. 1 Дифрактограммы покрытий Ti-Al-Ta-N, полученных в различных режимах распыления

Таблица 1

Режим	Мишень TiAl	Мишень Та	Ті, ат.%	Аl, ат.%	Та, ат.%	Н, ГПа	Е*, ГПа
1	Пост. ток	Пост. ток	39,3	45,5	15,2	31,4	294
2	Имп. ток	Имп. ток	45,5	38	16,5	33,1	315
3	Пост. ток	Имп. ток	42,8	38,2	19,0	32,6	314
4	Имп. ток	Пост. ток	43,7	44,7	11,6	33,6	315

Элементный состав и механические свойства покрытий Ti-Al-Ta-N

Элементный состав исследованных покрытий приведен в таблице 1. Необходимо отметить, что импульсный режим способствует более интенсивному распылению материала мишеней, что способствует увеличению содержания в покрытиях соответствующих элементов. Поэтому максимальное содержание Та наблюдается в покрытии, полученном в режиме 3, а минимальное в режиме 4. Кроме того при использовании импульсного распыления происходит рост относительного содержания Ti/Al. Последнее объясняется тем, что Ti обладает более отрицательной энергией Гиббса по сравнению с Al и Ta, что способствует первоочередному «отравлению» (азотированию) мишени TiAl на участках поверхности с преимущественным содержание Ti. Поскольку в импульсном режиме распыления степень «отравления» мишени значительно снижается, то это приводит к росту относительного содержания Ti в покрытиях.

Механические характеристики покрытий, определенные методом наноиндентирования, приведены в таблице 1. Анализ полученных данных свидетельствует о том, что использование импульсного магнетронного распыления способствует повышению как H, так и E*. Основной причиной этого является изменение внутренней микроструктуры покрытий. Исследование поперечных сечений покрытий методом СЭМ показало, что образцы, полученные в режиме постоянного тока, характеризуются выраженной столбчатой структурой. В тоже время покрытия, нанесенные с использованием импульсного тока, обладают более плотной смешанной структурой, состоящей из столбчатых и равноосных зерен.

Заключение. Исследована микроструктура и механические свойства покрытий Ti-Al-Ta-N нанесенных в различных режимах магнетронного распыления. Показано, что использование импульсного тока позволяет получить покрытия с более плотной микроструктурой, которая способствует повышению их механических характеристик. Полученные результаты свидетельствуют о возможности управления структурой и свойствами покрытий Ti-Al-Ta-N путем подбора оптимальных режимов магнетронного распыления.

Работа выполнена в рамках государственного задания ИФПМ СО РАН, проект FWRW-2021-0010.

- Grossmann B., Tkadletz M., Schalk N., Czettl C., Pohler M., Mitterer C., High-temperature tribology and oxidation of Ti_{1-x-v}Al_xTa_vN hard coatings // Surf. Coat. Technol. – 2018. – V.342. – P. 190–197.
- Kelly P.J., Braucke T. vom, Liu Z., Arnell R.D., Doyle E.D., Pulsed DC titanium nitride coatings for improved tribological performance and tool life // Surf. Coat. Technol. – 2007. – V.202. – P. 774–780.

УДК 620.184.3

ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ ПРОВОЛОЧНОЙ ЭЛЕКТРОННО-ЛУЧЕВОЙ АДДИТИВНОЙ ТЕХНОЛОГИИ ДЛЯ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ НИКЕЛЕВЫХ СПЛАВОВ

<u>Д.А. Гурьянов</u>^{1,2}, Е.О. Княжев¹, А.О. Панфилов¹ Научный руководитель: профессор, д.т.н. Е.А. Колубаев ¹Институт физики прочности и материаловедения СО РАН, Россия, г. Томск, пр. Академический, 2/4, 634055 ²Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>desa-93@mail.ru</u>

POSSIBILITIES OF WIRE-FEED ELECTRON BEAM ADDITIVE TECHNOLOGY FOR OBTAINING OF NICKEL-BASED ALLOY PRODUCTS

<u>D.A. Gurianov^{1,2}</u>, E.O. Knyazhev¹, A.O. Panfilov¹ Scientific Supervisor: Prof., Dr. E.A. Kolubaev ¹Institute of Strength Physic and Material Science, Russia, Tomsk, Academic str. 2/4, 634055 ²Tomsk Polytechnic University, Russia, 30 Lenina str., Tomsk, 634050 E-mail: desa-93@mail.ru

Abstract. In this work three types of nickel-based alloy products were obtained by wire-feed electron beam additive technology. Optimal values of wire-feed electron beam additive technology parameters were selected to ensure the formation of defect-free structure. It was found that the value of the heat input should be adjusted not only as the product height increases, but also during the formation of a single layer. This peculiarity is connected with different values and directions of temperature gradient at the beginning, in the middle and at the end of one layer. The presence of epitaxial directed growth of dendrites is explained by the fact that when a new layer is deposited, the already crystallized material is remelted repeatedly, and the underlying layers undergo periodic thermal influence. The mechanical properties of products formed from nickel-based superalloy are slightly superior to those of the original cast material. It is also shown that by wire-feed electron beam technology it is possible to restore damaged products and obtain bimetallic (nickel alloy - bronze) compositions.

Введение. Жаропрочные сплавы на основе никеля являются необходимым материалом для производства изделий в различных областях промышленности: энергетика, авиация, космонавтика, нефтеперерабатывающая промышленность. Подобные сплавы обладают способностью сохранять необходимые значения механических свойств, сопротивление коррозии и ползучести при высоких рабочих температурах (до 1100°C) [1]. Данные свойства достигаются за счет сложной системы легирования. Современные сплавы на основе никеля содержат до 50 вес.% добавляемых элементов: хром, кобальт, вольфрам, алюминий, ниобий, титан, молибден, рений, рутений, тантал, гафний. Присутствие дорогостоящих легирующих элементов значительно повышает стоимость материала. Исходя из этого, одной из актуальных задач является снижение количества отходного материала в процессе изготовления изделий. Перспективным подходом к решению данной задачи является

применение аддитивных технологий [2]. Аддитивное производство заключается в послойном выращивании изделий, что позволяет получать детали, требующие незначительной последующей механической обработки. Одно из направлений аддитивного производства - проволочная электроннолучевая аддитивная технология (ПЭЛАТ), выделяется на фоне других подходов высокой производительностью и ориентированностью на производство крупногабаритных изделий. Кроме того производство проволочного филамента дешевле, чем порошкового. Еще одна возможность, которую дают аддитивные технологии - это получение изделий из разнородных материалов или функционально градиентных материалов, за счет подачи нескольких филаментов в одну ванну расплава [3]. Также аддитивное производство позволяет получать изделия с направленным ростом структур, что необходимо при производстве лопаток газотурбинных двигателей и энергетических установок. Снижение стоимости изделий и конструкций возможно за счет восстановления поврежденных деталей (а не полная замена) также методами аддитивных технологий.

Исходя из выше сказанного, цель данной работы - показать особенности формирования изделий методом проволочной электронно-лучевой аддитивной технологии, особенности образования структуры и свойств.

Экспериментальная часть. В данной работе проводили серию экспериментов по формированию изделий из жаропрочного никелевого сплава ЖСбУ, Udimet-500 и жаропрочной бронзы БрХ методом проволочной электронно-лучевой аддитивной технологии. Стоит отметить, что из сплава ЖСбУ невозможно получить проволоку, в связи с этим данный материал использовался в виде прутков. В ходе выполнения эксперимента были получены три типа изделий: тонкие стенки из сплава ЖСбУ, имитация восстановления повреждения из сплава ЖСбУ и биметаллические изделия из сплавов Udimet-500 и БрХ.

При формировании первого типа изделий филамент подавался в фокус электронного луча, после формирования ванны расплава рабочий стол начинал движение, таким образом, постепенно образуя слой материала. В конце формирования слоя система подачи и электронная пушка перемещались вверх, а столик возвращался в исходное положение и процесс повторялся. Таким образом, происходило послойное выращивание изделия в виде тонкой стенки высотой 4 см и длиной 3 см. Для имитации восстановления повреждения, аналогично первому типу, формировали стенку, затем с верхней части срезали несколько слоев. Стенку помещали обратно в установку аддитивного производства и на «поврежденной» поверхности формировали еще несколько слоев. Третий тип изделий заключался в том, что сначала формировали стенку из никелевого сплава, а затем на ней же выращивали стенку из бронзы (и наоборот).

Результаты. На первом этапе выполнения работы было необходимо подобрать параметры проволочной электронно-лучевой аддитивной технологии, позволяющей получать бездефектные изделия из никелевого сплава с заданной геометрией. Основные параметры ПЭЛАТ - ток электронного луча, ускоряющее напряжение и скорость перемещения рабочего стола, удобно выражать через погонную энергию (U, кДж/мм) [4]. В ходе оптимизации ПЭЛАТ процесса были установлены краевые значения U - от 0,3 до 2,7 кДж/мм. В условиях недостаточной погонной энергии происходило расслоение формируемого изделия и образование трещин, в условиях избыточной U происходит излишнее растекание материала и потеря заданной геометрии. Структура материала полученного изделия является дендритной. Дендриты растут колониями через слои в направлении аддитивного выращивания с наклоном в сторону движения электронного луча. По границам дендритов наблюдаются выделения карбидов и эвтектик. Расстояния между осями дендритов первого порядка изменяются от 9 до 40 мкм по

Россия, Томск, 26-29 апреля 2022 г.

мере увеличения высоты изделия. При исследовании структуры переходной области второго типа изделий (имитация восстановления повреждения) было установлено отсутствие ярко выраженной границы между исходным материалом и нанесенным повторно. Переходная область имела аналогичную (исходному материалу) дендритную структуру с выделениями карбидов и эвтектики. В данной области не наблюдалось дефектов и отклонений от марочного химического состава. Третий тип изделий был представлен биметаллическими стенками (никелевый сплав - бронза). Было реализовано два варианта стратегии печати изделий: формирование никелевой стенки с последующим нанесением на нее бронзы и наоборот. При нанесении бронзового сплава наблюдается излишнее растекание по поверхности уже закристаллизовавшегося никелевого сплава. Вероятно, это связано с тем, что для плавления бронзы необходимо меньшее количество энергии, недостаточного для плавления никелевого сплава. В иной ситуации, когда сначала формируется бронзовая часть, а затем на нее наносится никелевая, не наблюдаются растекания материала и потеря заданной геометрии. Структура переходной области не содержит дефектов, а содержание меди в никелевом сплаве исчезает после нанесения 5го слоя.

Заключение. В работе были получены изделия трех типов из никелевого сплава методом ПЭЛАТ. Подобраны оптимальные значения параметров ПЭЛАТ процесса, обеспечивающих формирование бездефектной структуры. Установлено, что величину погонной энергии необходимо регулировать не только по мере увеличения высоты изделия, но и в процессе формирования одного слоя. Данная особенность связана с различными величинами и направлениями температурного градиента в начале, середине и в конце одного слоя. Наличие эпитаксиального направленного роста дендритов объясняется тем, что при нанесении нового слоя уже закристаллизовавшийся материал переплавляется повторно, а ниже лежащие слои испытывают периодическое термическое воздействие. Механические свойства изделий сформированных из сплава ЖС6У немного превосходят свойства исходно литого материала и составляют $\sigma_6 = 1209,5 \pm 9,2$ МПа, $\sigma_{0,2} = 1017,5 \pm 20,5$ МПа. Также показано, что методом ПЭЛАТ возможно восстановление поврежденных изделий и получение биметаллических (никелевый сплав бронза) композиций.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-32-90010

- Yang Li, Xiaoyu Liang, Yefeng Yu. Review on Additive Manufacturing of Single-Crystal Nickel-based Superalloys // Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers. – 2022. – P. 100019.
- Kindermann R.M., Roy M.J., Morana R. Effects of microstructural heterogeneity and structural defects on the mechanical behaviour of wire + arc additively manufactured Inconel 718 components // Materials Science & Engineering A. – 2022. – V. 839. – P. 142826.
- Osipovich K.S., Chumaevskii A.V., Eliseev A.A. Peculiarities of Structure Formation in Copper/Steel Bimetal Fabricated by Electron-Beam Additive Technology // Russian Physics Journal. – 2019. – V. 62. – P. 1486-1494.
- Tarasov S.Yu., Filippov A.V., Savchenko N.L. Effect of heat input on phase content, crystalline lattice parameter, and residual strain in wire-feed electron beam additive manufactured 304 stainless steel // The International Journal of Advanced Manufacturing Technology. – 2018. – V. 99. – P. 2353–2363.

УДК 621.791.725

КОРРОЗИОННОЕ ПОВЕДЕНИЕ СВАРНЫХ СОЕДИНЕНИЙ ИЗ ЦИРКОНИЕВОГО СПЛАВА Э110 С ЗАЩИТНЫМ ХРОМОВЫМ ПОКРЫТИЕМ

<u>К.С. Гусев</u>, С.Н. Кутылев, Д.А. Ашихмин Научный руководитель: доцент, к.ф.-м.н. Е.Б. Кашкаров Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>ksg11@tpu.ru</u>

CORROSION BEHAVIOR OF E110 ZIRCONIUM ALLOY WELDS WITH PROTECTIVE CHROMIUM COATING

<u>K.S. Gusev</u>, S.N. Kutylev, D.A. Ashikhmin Scientific Supervisor: Assoc. Prof., Ph.D. E.B. Kashkarov Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: <u>ksg11@tpu.ru</u>

Abstract. The high-temperature (HT) oxidation behavior of Cr-coated E110 zirconium alloy welds were investigated. Cr coatings were deposited by magnetron sputtering. Cr-coated and uncoated samples were oxidized at temperature of 1100 °C for 2-90 min. Optical microscopy was used to study the microstructure of the cross section of samples. The weight gain (WG) of each sample was calculated, and the hardness was measured using the Vickers method.

Введение. Начиная с 1940-го года, как только появились первые ядерные реакторы, циркониевые сплавы являются основой для изготовления оболочек тепловыделяющих элементов (ТВЭЛов) в реакторах с водяным охлаждением. Однако при возможных авариях с потерей теплоносителя может происходить сильный разогрев оболочек ТВЭЛов, который сопровождается их ускоренным окислением и самоподдерживающейся пароциркониевой реакцией (861 °C) с выделением взрывоопасного водорода. В настоящее время идёт разработка толерантного топлива для повышения безопасности водо-водяных реакторов при аварийных ситуациях [1]. Курс разработки толерантного топлива в краткосрочной перспективе направлен на повышение безопасности производимых оболочек из циркониевых сплавов путём нанесения защитных покрытий. Последние опубликованные данные показали, что сплавы на основе циркония могут быть защищены с помощью хромовых покрытий, осажденных с помощью магнетронного осаждения, от высокотемпературного окисления в течение длительного периода времени [2]. Для дистанцирования ТВЭЛов используются специальные дистанцирующие решетки из циркониевых сплавов, которые изготавливаются с применением лазерной сварки. Испытания на окисления лазерно-лучевых сварных швов представлены в научной работе [3]. Однако коррозионное поведение и механические свойства сварных швов, полученных методом лазерной сварки, с нанесенным хромовым покрытием изучено не было. В связи с этим, целью настоящей работы является исследование коррозионного поведения сварных соединений из циркониевого сплава Э110 с защитными хромовыми покрытиями.

Экспериментальная часть. Перед нанесением покрытия образцы с лазерно-лучевым швом (ЛЛШ) промывали в ацетоне в ультразвуковой ванне и сушили с помощью обдува сжатым воздухом в течение 2 мин. Для удаления поверхностных загрязнений и оксидной пленки образцы дополнительно обрабатывались потоком ионов Ar^+ с использованием источника ионов. Для осаждения Cr покрытий была использована вакуумная установка с мультикатодной системой магнетронного распыления. Образцы окисляли на воздухе в лабораторной печи ATS 3210. Начальная температура в экспериментах по окислению составляла 500 °C. Все образцы нагревали до 1100 °C, а затем изотермически окисляли в течение 2, 10, 30, 45, 60 и 90 минут. Коррозионный привес рассчитывался на основе данных измерения массы до и после окисления. Оптическая микроскопия использовалась для изучения микроструктуры поперечного шлифа образцов. Для микроструктурного анализа производилось травление шлифов в растворе 5 % HF + 45 % HNO₃ + 50 % H₂O. Твёрдость образцов измерялась методом Виккерса при нагрузке 50 г. Были выбраны три зоны для исследования: область сварного соединения, зона термического воздействия (ЗТВ) и зона объёмного сплава. Результаты твердости приведены как среднее по 12 индентациям для каждой зоны.

Результаты. Измеренные значения коррозионного привеса показали, что хромовое покрытие снижает коррозионный привес образцов ЛЛШ в 7,9 и 6,6 раз при длительности окисления 2 и 10 мин соответственно. Коррозионный привес для образцов с хромовым покрытием увеличивается с увеличением длительности окисления. При длительностях окисления до 60 мин наблюдается линейная зависимость привеса от времени (Рис. 1). При дальнейшем увеличении длительности наблюдается ускоренная скорость окисления образцов, что вероятно связано с переходом к незащитному механизму окисления, также описанному в научной работе [2].

Рис. 1. Графики зависимости коррозионного привеса образцов ЛЛШ с Cr покрытием (слева) и изменения твердости различных зон (справа) от времени окисления

Исходный образец ЛЛШ имел средние показатели твёрдости 195 ± 9 HV, 209 ± 6 HV, 222 ± 7 HV в зоне сварного сплава, 3TB и зоне объёмного сплава соответственно. График зависимости твёрдости от времени окисления, показал, что образцы с Cr покрытием вплоть до 30-ти минут окисления имеют среднюю твёрдость в диапазоне 220 ± 30 HV, 231 ± 11 , HV и 201 ± 8 HV в зоне сварного сплава, 3TB и зоне объёмного сплава соответственно. Для образцов с Cr покрытием вплоть до 30-ти минут окисления не наблюдается существенного роста твёрдости во всех зонах. При увеличении длительности окисления от 30 до 90 минут наблюдается постепенный прирост твёрдости во всех наблюдаемых зонах образца от 219 HV до 370 HV, от 231 HV до 348 HV, от 201 HV до 314 HV в зоне сварного сплава, 3TB и зоне объёмного сплава соответственно (Рис. 1). Данное повышение твёрдости обусловлено диффузией

кислорода через хромовое покрытие (преимущественно по границам зерен) вглубь сплава с образованием стабилизированной кислородом фазы α-Zr(O) [4].

Анализ микроструктуры показал, что область сварного шва имела пластинчатую микроструктуру Видманштеттена, которая типична для материалов, к которым применялась лазерно-лучевая сварка (Рис.2а). После 2-ух минутного окисления наблюдалось сильное окисление области сварного шва: формировался толстый неравномерный слой ZrO₂ толщиной более 200 мкм (Рис. 2б). При более длительном окислении (10 мин) происходило полное окисление сварного шва с образованием трещин. В образцах с Cr покрытием, образование оксидного слоя (ZrO₂ и α-Zr(O)) не происходило при длительностях окисления до 30 мин, что указывает на хорошие защитные свойства покрытий. Необходимо также отметить отсутствие каких-либо отслоений и трещин в покрытиях хрома после атмосферного окисления.

Рис. 2. Микроструктура образцов ЛЛШ до окисления без покрытия до (a) и после окисления в течение 2 мин (b); с Cr-покрытием в течение 2 мин (в) и 10 мин (г)

Заключение. Хромовые покрытия повышают коррозионную стойкость сварных соединений, полученных лазерно-лучевой сваркой, при окислении на воздухе при температуре 1100 °C. Зависимость коррозионного привеса от длительности окисления носит линейный характер при окислении до 60 мин. При длительностях окисления до 30 минут не происходит существенного изменения твердости сварных швов. При увеличении длительности окисления от 30 до 90 мин происходит постепенное увеличение их твердости до значений 370 ± 70 HV, 348 ± 40 HV и 314 ± 32 HV в зоне сварного сплава, 3TB и объёмного сплава соответственно. Повышение твёрдости сварных соединений указывает на образование стабилизированной фазы α -Zr(O), имеющей повышенную хрупкость.

Исследование выполнено при поддержке Российского научного фонда, проект 19-79-10116

- 1 Kashkarov E., Afornu B., Sidelev D., Krinitcyn M., Gouws V., Lider A. Recent advances in protective coatings for accident tolerant Zr-based fuel claddings // Coatings. 2021. V. 11. №. 5. P. 557.
- 2 Brachet J.C., Rouesne E., Guilbert T. et al. High temperature steam oxidation of chromium-coated zirconium-based alloys: Kinetics and process // Corrosion Science – 2020. – V. 167. – P. 108537.
- 3 Slobodyan M. S., Kudiiarov V. N., Lider A. M. Effect of energy parameters of pulsed laser welding of Zr-1% Nb alloy on metal contamination with gases and properties of welds // Journal of Manufacturing Processes. – 2019. – V. 45. – P. 472-490.
- 4 Kashkarov E.B., Sidelev D.V., Syrtanov M.S., Tang C., Steinbrück M. Oxidation kinetics of Cr-coated zirconium alloy: Effect of coating thickness and microstructure // Corrosion Science. – 2020. – V. 175. – P. 108883.

УДК 620.17

МЕХАНИЧЕСКИЕ СВОЙСТВА КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ АЛЮМИНИЕВО-КРЕМНИЕВОГО СПЛАВА АК5 И НИКЕЛЕВОГО СПЛАВА UDIMET-500, ПОЛУЧЕННОГО МЕТОДОМ ЭЛЕКТРОННО-ЛУЧЕВОГО АДДИТИВНОГО ПРОИЗВОДСТВА

<u>А.Р. Добровольский</u>, А.В. Чумаевский Научный руководитель: д.т.н. С.Ю. Тарасов Институт физики прочности и материаловедения СО РАН Россия, г. Томск, пр. Академический 2/4, 634055 E-mail: <u>artdobrov@ispms.ru</u>

MECHANICAL PROPERTIES OF THE COMPOSITE MATERIAL BASED ON ALUMINUM-SILICON ALLOY AK5 WITH THE ADDITION OF HIGH-RESISTANT NICKEL ALLOY UDIMET-500 PRODUCED BY ELECTRON BEAM ADDIVE MANUFACTURING

<u>A.R. Dobrovolsky</u>, A.V. Chumaevskii Scientific supervisor: Dr. S.Yu. Tarasov

Institute of strength physics and materials science SB RAS, Russia, Tomsk, Akademicheskii ave. 2/4, 634055 E-mail: <u>artdobrov@ispms.ru</u>

Abstract. The report describes the features of the formation of the structure and mechanical properties of composite materials based on aluminum-silicon alloy AK5 modified with heat-resistant nickel alloy Udimet-500 by the electron-beam additive manufacturing method. The microstructure of the samples demonstrates a great variety of phase composition with alloying component agglomerates. When tested in compression, the material exhibits high tensile strength, low ductility, and a tendency to brittle fracture.

Введение. Литейные алюминиевые сплавы типа АК5 широко применяются для получения низконагруженных деталей сложной конфигурации. Из алюминиево-кремниевых сплавов (силуминов) производятся корпусные детали, фасонные отливки, тянутые и сварочные проволоки. Негативными характеристиками силуминов являются низкий предел прочности (147-235 МПа) и склонность к хрупкому разрушению (относительное удлинение до 2%) [1]. Для улучшения свойств алюминиевых сплавов могут применяться термическая обработка, нагартовка и легирование. В качестве легирующих компонентов используют Ni, Ti, Mo и другие элементы [2]. Получение композиционных материалов с металлической матрицей на основе алюминиевых сплавов имеет широкие перспективы применения, так как позволяет получать изделия с упрочненной структурой отдельных компонентов изделия совместно с сохранением основного металла с низкой стоимостью и плотностью, а также высокой пластичностью. Например, возможно получение упрочненных поверхностных слоёв для дальнейшего трибологического применения [3]. Одним из современных методов получения композиционных материалов является электронно-лучевое аддитивное производство с использованием проволочного филамента. Данный метод вызывает большой интерес со стороны научного сообщества, так как позволяет получать большое разнообразие материалов на основе стандартных металлических проволок благодаря использованию двух проволочных податчиков с управляемой подачей филаментов в ванну расплава [4]. В результате

возможно, как формирование композиционных материалов с нестандартным сочетанием структуры и свойств, так и изготовление деталей с направленно заданной структурой в различных участках. Целью настоящей работы является исследование формирования структуры при получении композиционного материала на основе сплава AK5 с введением при печати никелевого сплава Udimet-500.

Материалы и методы. Образцы получены методом электронно-лучевого аддитивного производства из проволоки AK5 диаметром 1,2 мм с введением 5% и 10% проволоки жаропрочного никелевого сплава Udimet-500 (химический состав сплава указан в таблице 1) и без неё на экспериментальном оборудовании в Институте физики прочности и материаловедения. Образцы изготовлены в виде тонких стенок длиной 100-120 мм, толщиной 7-8 мм и высотой 60-100 мм. Исследования структуры проводили методом оптической микроскопии (микроскоп Альтами MET1C) и методом сканирующей электронной микроскопии (микроскоп Аргео 2 SEM). Определение механических свойств материалов производили на универсальной испытательной машине УТС110М.

Таблица 1

Элемент	Ni	Cr	Со	Мо	Fe	Ti	Al	В
Содержание в сплаве, %	53	17,5	16,5	4	4	3,9	2,9	0,01

Химический состав сплава Udimet-500

Результаты. На экспериментальной установке электронного аддитивного производства были изготовлены образцы с тремя составами: AK5 без модификаторов, AK5 + 5% Udimet-500 и AK5 + 10% Udimet-500. Процесс электронно-лучевой печати образцов показан на рисунке 1. В зону печати подавали основной сплав - AK5, с введением дополнительного объема проволочного филамента Udimet500.

Рис. 1. Процесс изготовления образцов для исследования

На рисунке 2 представлено изображение макроструктуры состава AK5 + 10% Udimet-500. В структуре образцов наблюдается алюминиевая матрица с интерметаллидными включениями, включениями частиц никелевого сплава и пластинами кремния. Часть включений имеет дендритную структуру, в то время как другая часть представлена агломерированными частицами сплава Udimet-500, окружёнными интерметаллидной оболочкой. В целом структура очень неоднородна, наблюдаются как участки, обогащенные частицами сплава Udimet-500, так и обедненные зоны.

Рис. 2. Микроструктура АК5, модифицированного 10% Udimet-500

Причиной образования агломератов частиц сплава Udimet-500 является большая плотность никелевого сплава по сравнению с алюминиевой матрицей и его высокая по сравнению с алюминием температура плавления. В процессе печати композитов данного состава наблюдается трещинообразование по границам включений из Udimet-500. Такое поведение материала объясняется различием коэффициентов термического расширения используемых материалов. Также в связи с разнородностью свойств АК5 и Udimet-500 в процессе изготовления образуются алюминиевые подтёки, осложняющие получение геометрически равномерных изделий из данных материалов.

Исследование полученного материала на сжатие показало высокие значения прочности. Предел прочности образцов АК5 + 10% Udimet-500 составил 475–500 МПа. Но, помимо высоких прочностных показателей исследуемый материал обладает склонностью к хрупкому разрушению, что демонстрируют значения предела текучести близкие к пределу прочности 455–498 МПа. Пластичность при испытаниях на сжатие составляет 5–8 %. Такое положение обусловлено высокой степенью упрочнения алюминиевого сплава при внедрении никеля, а также высокой неоднородностью его распределения в объеме образца.

Заключение. Результаты исследования показывают возможность получения композиционных материалов на основе стандартных проволок, включая высоколегированные сплавы типа Udimet-500. Полученные композиционные материалы демонстрируют высокий предел прочности при испытании на сжатие, но также склонны к хрупкому разрушению. Образцы демонстрируют дендритную структуру и большое разнообразие фазового состава, включая интерметаллидные соединения.

Работа выполнена в рамках государственного задания ИФПМ СО РАН, тема номер FWRW-2021-0012.

СПИСОК ЛИТЕРАТУРЫ

- ГОСТ 1583-93 Сплавы алюминиевые литейные. Введ. 1997-01-01-М.: Изд-во стандартов, 2004. 24
 с. 2. Захаров В. В. Легирование алюминиевых сплавов переходными металлами //Технология легких сплавов. 2011. №. 1. С. 22-28.
- 2. Filippov A. et al. Microstructure and Corrosion Resistance of AA4047/AA7075 Transition Zone Formed Using Electron Beam Wire-Feed Additive Manufacturing // Materials. 2021. V. 14. №. 22. P. 6931.
- 3. Murr L. E. et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies // Journal of Materials Science & Technology. 2012. V. 28. № 1. P. 1-14.

67

УДК 538.91

ВЛИЯНИЕ ТЕМПЕРАТУРЫ ОТЖИГА НА МАРТЕНСИТНЫЕ ПРЕВРАЩЕНИЯ И МЕХАНИЧЕСКИЕ СВОЙСТВА ПОРИСТОГО NITI

<u>К.М. Дубовиков</u>, А.В. Ветрова, М.А. Ковалева Научный руководитель: доцент, к.ф.-м.н. Е.С. Марченко Национальный исследовательский Томский государственный университет, Россия, г. Томск, пр. Ленина, 36, 634050 E-mail: kirill_dubovikov@mail.ru

THE INFLUENCE OF THE ANNEALING TEMPERATURES ON MARTENSITIC TRANSFORMATION AND MECHANICAL PROPERTIES POROUS NITI

<u>K.M. Dubovikov</u>, A.V. Vetrova, M.A. Kovalyova Scientific Supervisor: PhD E.S. Marchenko Tomsk State University, Russia, Tomsk, Lenin str., 36, 634050 E-mail: kirill_dubovikov@mail.ru

Abstract. In this research we provided the investigation of the martensitic transformation and mechanical properties of porous NiTi produced by self-propagating high-temperature synthesis. It was concluded that the annealing temperatures affect on stress and strain values. Not-annealed sample demolished when stress equals to 17.5 MPa but the sample annealed at 1000 °C demolished at 25 MPa. Also, it was established that the strain value required to break the sample decreases from 1.55 % for NiTi25 till 0.75 % for NiTi1000. The annealing does not affect on a martensitic transformation. The MP temperatures of the beginning and finishing do not change a lot.

Введение. Интерес к сплавам никелида титана объясняется его биомеханической и биохимической совместимостями. Биохимическая совместимость подразумевает отсутствие различных воспалительных реакций в прилежащих к имплантату тканях организма, а также наличие высокой коррозионной стойкости NiTi из-за формирующихся на поверхности оксидов титана, защищающих окружающие имплантат такни от воздействия никеля [1]. Биомеханическая совместимость обусловлена сверхэластичностью, зависящей от обратимых мартенситных превращений, вызванных напряжением. Мартенситные превращения в пористых сплавах никелида титана частично ограничены структурными неоднородностями и пористой структурой. При этом отжиг приводит еще большему структурному усложнению пористых сплавов NiTi, что влияет на механические свойства и мартенситные превращения. Фазы оксидов титана и интерметаллидов Ni₃Ti не обладают сверхэластичностью и памятью формы, поэтому необходимо исследовать не только влияние отжига на коррозионную стойкость пористого NiTi, но и насколько сильно меняется механическое поведение этих сплавов при воздействии внешней нагрузки. При производстве медицинских имплантатов сплавы подвергают нагреву от 400 до 900 °С. Время и температура отжига влияют на структурный и фазовый состав окисленной поверхности. Поэтому целью данной работы является исследование влияния температур отжига на воздухе на структуру, свойства поверхности и механическое поведение пористого NiTi.

Экспериментальная часть. Пористые сплавы TiNi были получены методом самораспространяющегося высокотемпературного синтеза в режиме постоянного послойного горения в проточном реакторе в атмосфере аргона. Смесь порошков Ti–50 ат. %, Ni–50 ат. % засыпали в кварцевую трубу и помещали в реактор. Образец перед зажиганием нагревали до температуры 350–380 °C. Проточный аргон подавали в реактор под давлением 0,01–0,05 МПа. Зажигали образцы раскаленной молибденовой электрической спиралью. После остывания образцов из цилиндров были вырезаны от 14 или 21 образцов с индивидуальными размерами для каждого испытания.

Образцы делили на группы по два или три, в зависимости от эксперимента, образца в каждом. В дальнейшем образцы окисляли в печи на воздухе при температуре от 500 до 1000 °C с шагом в 100 °C, t=5 мин. Одну группу не отжигали, оставив ее в качестве контрольной. Для удобства были введены условные обозначения образцов, где число соответствует температуре отжига, например NiTi500, NiTi600 и так далее. Контрольные образцы обозначили NiTi25.

Для механических испытаний растяжением и трехточечным изгибом использовались модули Kammrath & Weiss GmbH. Мартенситные превращения исследовали методом дифференциальной сканирующей калориметрии на калориметре DSC 404 F3 с температурного интервала от +250 °C до - 150 °C. Скорости нагрева и охлаждения составляли 10 К / мин. Температуры мартенситного превращения определяли по пикам DSC с использованием метода удлинения наклонной линии.

Результаты. В таблице 1 приведены результаты механических испытаний при одноосном растяжении пористых образцов NiTi. Все образцы NiTi25, NiTi500, NiTi700, NiTi800 и NiTi900 разрушаются подобно по упругопластическому механизму. Максимальные значения предела прочности $\sigma_B=25$ МПа наблюдаются в сплаве NiTi1000, при минимальном уровне общей деформации до разрушения $\varepsilon_{of}=0,75$ %. Высокие напряжения, необходимые для разрушения образца NiTi1000, возможно связаны с формированием упрочненной кислородом двухслойной структуры на поверхности сплавов в результате отжига [2]. Ранее было установлено наличие упрочненного кислородом приповерхностного слоя матрицы NiTi и массивного слоя оксидов титана, растущего при 800 °C под которым находилась зона Ni₃Ti.

Таблица 1

	NiTi25	NiTi500	Niti700	NiTi800	NiTi900	NiTi1000
σ _в , МПа	17,5	18	18,2	18	19	25
ε _{οδ} , %	1,55	1,5	1,5	1,25	1,1	0,75

Механические характеристики при растяжении образцов пористых сплавов NiTi после отжига

На рисунке 1 показаны кривые ДСК, построенные для пористых образцов CBC-NiTi. Широкий пик, зафиксированный при охлаждении, показывает фазовое превращение из аустенита B2 в мартенсит B19', а пик на кривой нагрева соответствует переходу из B19' в B2. В таблице 2 приведены значения температур прямого Ms, Mf и обратного превращений As, Af, изменение энтальпии $\Delta H^{M\to A}$, $\Delta H^{A\to M}$, ДСК и рассчитанные значения энтропии $\Delta S^{M\to A}$, $\Delta S^{A\to M}$, движущей силы мартенсита $\Delta G^{A\to M}$ измеренные методом ДСК. Температуры МП отличаются друг от друга незначительно, то есть МП в образцах, отожженных при разных температурах, происходят одинаково.

Рис. 1 Кривые ДСК, полученные для пористого NiTi

Таблица 2

	Ma 9C	M£ °C	As °C		$\Delta H^{A \to M}$,	$\Delta H^{M \to A}$,	$\Delta S^{A \to M}$,	$\Delta S^{M \to A}$,	$\Delta G^{A \to M}$,
	Ms, °C	MI, °C	As, °C	AI, C	Дж/г	Дж/г	Дж/гК	Дж/гК	Дж/г
NiTi25	68,0	56,4	90,4	105,8	10,070	-11,76	0,116	-0,135	2,558
NiTi500	66,8	55,6	90,2	104,2	9,302	-11,81	0,109	-0,138	2,583
NiTi600	67,2	56,0	90,1	105,0	10,780	-12,74	0,125	-0,148	2,797
NiTi700	67,8	56,4	90,2	104,9	9,926	-12,23	0,115	-0,142	2,627
NiTi800	67,5	56,9	90,6	105,7	8,555	-10,97	0,099	-0,127	2,419
NiTi900	68,5	56,8	89,6	106,3	7,312	-8,83	0,084	-0,101	1,910
NiTi1000	68,3	56,0	88,1	106,5	4,146	-5,44	0,047	-0,062	1,189

Данные, полученные с помощью ДСК

Заключение. Установлено, что деформация всех пористых сплавов носит упругопластический характер. Максимальное значение предела прочности имеет образец NiTi1000 из-за сформировавшейся в результате отжига упрочненной кислородом структуры. Наличие на кривых ДСК широких пиков как при нагреве, так и при охлаждении свидетельствует о наличие в интервале «нагрев-охлаждение» одностадийного обратимого мартенситного превращения B19'↔B2. Термообработка не приводит к существенному изменению значений характеристических температур МП, но влияет на количество выделившегося и поглощённого тепла при прямом и обратном переходе.

Работа выполнена в рамках проекта Госзадание Минобрнауки России проект № FSWM-2020-0022.

- Ponsonnet L., Reybier K., Jaffrezic N., Comte V., Lagneau C., Lissac M., Martelet C. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behavior // Materials Science and Engineering: C. – 2003. – V. 23, № 4. – P. 551–560.
- Dubovikov K.M., Garin A.S., Marchenko E.S., Bajgonakova G.A., Shishelova A.A., Kovaleva M.A. Effect of Annealing Temperature on the Surface Structure and Properties of Porous TiNi // Inorganic Materials. – 2021. – V. 57, № 12. – P. 1242–1249.

УДК 538.911; 538.951; 538.975

ВЛИЯНИЕ СТРУКТУРЫ НА ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ПОВЕРХНОСТНЫХ Ті-Ni-Ta СПЛАВОВ, СИНТЕЗИРОВАННЫХ НА TiNi-ПОДЛОЖКЕ ЭЛЕКТРОННО-ПУЧКОВЫМ СПОСОБОМ

Ф.А. Дьяченко¹, А.А. Атовуллаева²

Научный руководитель: профессор, д.ф.-м.н. Л.Л. Мейснер^{1, 2}

¹Институт физики прочности и материаловедения СО РАН,

Россия, г. Томск, пр. Академический, 2/4, 634055

²Национальный исследовательский Томский государственный университет,

Россия, г. Томск, пр. Ленина, 36, 634050

E-mail: frozennonetroll@mail.ru

INFLUENCE OF THE STRUCTURE ON THE PHYSICAL-MECHANICAL PROPERTIES OF THE TI-NI-Ta-BASED SURFACE ALLOYS, FABRICATED ON NITI-SUBSTRATE BY ELECTRON BEAM SYNTHESIS

F.A. D'yachenko¹, A.A. Atovullaeva²

Scientific Supervisor: Prof., Dr. L.L. Meisner^{1,2}

¹Institute of Strength Physics and Materials Science SB RAS, Russia, Tomsk, pr. Akademicheskii, 2/4, 634055 ² Tomsk State University, Russia, Tomsk, 36, Lenin Ave, 634050

E-mail: frozennonetroll@mail.ru

Abstract. This work shows a study on the investigation of the physical-mechanical properties of Ti-Ni-Ta-based surface alloys (here and after [Ti-Ni-Ta]SA), fabricated on the NiTi-substrate. The [Ti-Ni-Ta]SA were fabricated in a single vacuum cycle, that comprises preliminary low-energy high-current pulsed electron beam (LEHCEB), Ti-Ta film deposition by magnetron sputtering, and pulsed electron beam melting of the system [Ti-Ta-film/NiTi-substrate]. Experimental investigations of physical-mechanical properties of [Ti-Ni-Ta]SA on the NiTi-substrate were performed by the method of instrumented indentation. Our data suggest that the electron beam synthesis of [Ti-Ni-Ta]SA, different in thickness and composition on the NiTi-substrate, leads to a gradient change of physical-mechanical properties.

Введение. В исследованиях [1, 2] показано, что слабую адгезионную прочность и термомеханическую несовместимость покрытий с подложкой из функционального TiNi сплава можно решить с использованием аддитивного тонкопленочного электронно-пучкового (АТП-ЭП) способа синтеза поверхностных сплавов (ПС). Суть этого способа, детально описанного в [1, 2], заключается в многократном чередовании операций осаждения легирующей пленки заданного состава и определенной толщины (~50–100 нм) и последующего жидкофазного перемешивания компонентов пленки и подложки с помощью импульсного низкоэнергетического (≤ 30 кэВ) сильноточного (до ~25 кА) электронного пучка (НСЭП) микросекундной длительности (~2–4 мкс). С целью понижения концентрации Ni вблизи поверхности, повышения коррозионных свойств и рентгеноконтрастности TiNi сплава АТП-ЭП способ был применен для синтеза ПС на основе Ti-Ni-Ta (далее [Ti-Ni-Ta]ПС).

В данной работе приведены результаты исследований физико-механических свойств [Ti-Ni-Та]ПС, различающихся строением и структурой [1, 2], включая толщину подслоев, фазовые составы, изучено влияние этих характеристик на прочностные и упруго-пластические параметры [Ti-Ni-Ta]ПС и их механическую совместимость с TiNi-подложкой, показано, что изменение концентрации Та в легирующей плёнке влияет не только на структуру, строение и химический состав самих [Ti-Ni-Ta]ПС, но и на физико-механические свойства систем [[Ti-Ni-Ta]ПС/TiNi-подложка].

Цель работы – исследовать влияние структуры на физико-механические свойства [Ti-Ni-Ta]ПС, синтезированных на TiNi-подложке электронно-пучковым способом.

Материалы и методы исследования. Исследования проводили на образцах TiNi сплава. Подробное описание материала и этапы предварительных поверхностных обработок TiNi-образцов приведено в работе [3]. Формирование [Ti-Ni-Ta]ПС на TiNi-подложке осуществляли в едином вакуумном цикле на модифицированной автоматизированной установке «РИТМ-СП» (ООО «Микросплав», Россия). Приготовлены [TiNi-Ta₃₀]ПС и [TiNi-Ta₄₀]ПС на основе систем: 1) [пленка Ті₇₀Та₃₀, толщина 50 нм/ТіNi-подложка] и 2) [пленка Ті₆₀Та₄₀, толщина 50 нм/ТіNi-подложка]. Подробное описание синтеза [TiNi-Ta₃₀]ПС и [TiNi-Ta₄₀]ПС приведено в [1, 2]. Прочностные и упруго-пластические параметры определяли методом инструментального индентирования на установке NanoTest (Micro Materials Ltd, Великобритания) ИФПМ СО РАН (Россия, Томск), оборудованной наконечником Берковича. Описание условий эксперимента приведено в [4].

Результаты. Согласно исследованиям [1], выполненных методом ПЭМ, образец с [TiNi-Ta₃₀]ПС имеет многослойное нанокомпозитное строение, состоящее из 7 подслоев, отличающихся химическим и фазовым составами, средним размером зерна и ориентацией зерен. В работе [2] показано, что образец с [TiNi-Ta₄₀]ПС имеет монослойное аморфное строение. Рисунок 1 а иллюстрирует изменения физикомеханических свойств поверхностных слоёв в образце с [TiNi-Ta₃₀]ПС. Как видно, [TiNi-Ta₃₀]ПС и переходная Ti-Ni-Ta зона характеризуются градиентом физико-механических свойств, однако в [TiNi-Та₃₀]ПС градиент в ~2 раза выше, чем в переходной Ті-Ni-Та зоне. Как видно из рисунка, в области существования [TiNi-Ta₃₀]ПС, структуры нанокристаллических слоёв I, III и аморфного подслоя II, описанные в [1], оказывают большее влияние на свойства в образце с [TiNi-Ta₃₀]ПС, чем нанокристаллические подслои IV-VI в переходной Ті-Ni-Та зоне. Наличие протяженной переходной зоны обеспечивает монотонное изменение физико-механических характеристик от [TiNi-Ta₃₀]ПС к TiNiподложке. Рисунок 1 б иллюстрирует физико-механические свойства поверхностных слоёв в образце с [TiNi-Ta₄₀]ПС. Как видно, свойства в поперечном сечении поверхностного слоя образца с [TiNi-Ta₄₀]ПС, при переходе от [TiNi-Ta₄₀]ПС к TiNi-подложке, изменяются градиентно, но с меньшей скоростью изменения. Однако, в отличие от образца с [TiNi-Ta₃₀]ПС, в слое I на глубине более ~1 мкм интегральные физико-механические свойства близки к свойствам, которые характерны для исходного TiNi-образца (символами на рисунке 1 большего размера обозначены свойства для исходного TiNi-образца на глубине более ~2 мкм). Отсюда следует, что в образце с [TiNi-Ta₄₀]ПС, последовательный переход от слоя I с аморфной структурой к подслою II с нанокомпозитной и, затем, к подслою III с эвтектической структурами, исследованные в [2], обеспечивает механическую совместимость аморфного слоя I и TiNiподложки благодаря реализованному в поверхностной области плавному градиенту физикомеханических свойств.

Рис. 1. Зависимости микротвёрдости H_{OΦ} (1), модуля упругости E_{OΦ} (2), параметра пластичности δ_h
 (3) и степени восстановления отпечатка η (4) от максимальной глубины проникновения индентора h_{max} для образца с [TiNi-Ta₃₀]ПС (а) и с [TiNi-Ta₄₀]ПС (б) (символами большего размера обозначены свойства для исходного TiNi-образца на глубине более ~2 мкм)

Заключение. Анализ полученных экспериментальных результатов показал, что вблизи поверхности образца с [TiNi-Ta₃₀]ПС, обладающего многослойным нанокомпозитным строением, прочностные характеристики (микротвердость $H_{O\Phi}$ и модуль упругости $E_{O\Phi}$) выше на ~1 и ~20 ГПа, соответственно, пластичность δ_h – на 2-8% ниже, а способность обратимого возврата локальной деформации η на ~6-7% выше, чем в образце с [TiNi-Ta₄₀]ПС с монослойным аморфным строением. В обоих случаях основным механизмом возврата локальной деформации является упругое восстановление отпечатка индентора за счет высокого значения модуля упругости. Многослойное строение не только самих [Ti-Ni-Ta]ПС, но и переходных слоев обеспечивает механическую совместимость [Ti-Ni-Ta]ПС с TiNi-подложкой без скачкообразного изменения физико-механических характеристик.

Авторы благодарят м.н.с. ЛВЭ ИСЭ СО РАН Яковлева Е.В. – за проведение электронно-пучкового синтеза; д.ф.-м.н., с.н.с. ЛФПЯ ИФПМ СО РАН Шугурова А.Р – за проведение испытаний по оценке физико-механических свойств. Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 20-33-90034.

СПИСОК ЛИТЕРАТУРЫ

- Meisner S.N., Yakovlev E.V., Semin V.O., Meisner L.L., Rotshtein V.P., Neiman A.A., D'yachenko F.A. Mechanical behavior of Ti-Ta-based surface alloy fabricated on TiNi SMA by pulsed electron-beam melting of film/substrate system // Appl. Surf. Sci. – 2018. – Vol. 437. – P. 217–226.
- Neiman A.A., Mukhamedova R.R., Semin V.O. Mechanical properties of the TiNi and surface alloy formed by pulsed electron beam treatment // Materials research proceedings. – 2018. – Vol. 9. – P. 58–62.
- Мейснер С.Н., Дьяченко Ф.А., Яковлев Е.В., Мейснер Л.Л. Влияние числа импульсов воздействий электронным пучком на изменение физико-механических свойств поверхностного слоя никелида титана // Изв. вузов. Физика. – 2016. – Т. 59. – № 7/2. – С. 159–163.
- D'yachenko F.A., Meisner S.N., Yakovlev E.V., Atovullaeva A.A., Meisner L.L. Modification of physicalmechanical properties of NiTi alloy by electron beam in surface melting mode // IOP Conf. Series: Materials Science and Engineering. – 2019. – Vol. 597. – P. 012044(1-5).

Россия, Томск, 26-29 апреля 2022 г.

73

УДК 666.3-121

ИССЛЕДОВАНИЕ МИКРОПОРИСТОЙ КЕРАМИКИ Al₂O₃, ПОЛУЧЕННОЙ ИСКРОВЫМ ПЛАЗМЕННЫМ СПЕКАНИЕМ ПРЕКЕРАМИЧЕСКИХ БУМАГ

А.К. Дюсамбаев, М.Г. Криницын

Научный руководитель: к.ф.-м.н. Е.Б. Кашкаров Национальный исследовательский Томский политехнический университет Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>akd7@tpu.ru</u>

INVESTIGATION OF MICROPOROUS CERAMICS AL₂O₃ PRODUCED BY SPARK PLASMA SINTERING OF PRECERAMIC PAPER

<u>A.K. Dyusambaev</u>, M.G. Krinitsyn Scientific Supervisor: PhD E.B. Kashkarov Tomsk Polytechnic University, Russia, Tomsk, Lenin Ave., 30, 634050 E-mail: <u>akd7@tpu.ru</u>

Abstract. Within the framework of this study, the properties of obtained ceramics based on Al_2O_3 by spark plasma sintering (SPS) using preceramic papers are considered. This method makes it possible to obtain ceramic materials of the required shape, as well as to regulate their physicochemical properties to the required values. A qualitative and quantitative analysis of the crystal structure of aluminum oxide samples was carried out alongside with determination of mechanical properties.

Введение. На сегодняшний день остро стоит вопрос получения чистой энергии, так как нефть, уголь и природный газ являются не возобновляемыми источниками энергии и имеют негативное влияние на окружающую среду, а атомная промышленность имеет большой минус в лице использованных изотопов урана. Водородная энергетика является одним из наиболее перспективных направлений для развития энергетики [1]. Для получения водорода используются палладиевые мембраны и различные подложки для них [2].

В настоящее время одними из самых эффективных подложек являются подложки на основе оксида алюминия [3]. Поры в материалах из оксида алюминия за счет своих размеров, способны пропускать атомы водорода и в тоже время не пропускают остальные газы, а сам оксид алюминия является стойким к водородному охрупчиванию. За счет этих свойств Al₂O₃ рассматривается как один из основных материалов подложек для фильтров водородного топлива на сегодняшний день [4].

Материалы и методы. В рамках данного исследования рассматриваются свойства полученных керамик на основе Al₂O₃ методом искрового плазменного спекания (ИПС) с использованием прекерамических бумаг. Такой метод позволяет получать керамические материалы необходимой формы, а также регулировать их физико-химические свойства до необходимых значений.

Образец был получен из прекерамических бумаг на основе оксида алюминия методом искрового плазменного спекания при температуре 1600°С и давлении 50 МПа в течение 5 минут. Полученный образец представляет с собой диск, который в дальнейшем подвергался механической обработке

поверхности путем шлифовки и полировки для дальнейших исследований. Рентгеноструктурный анализ осуществлялся на дифрактометре Shimadzu XRD 7000S (СиКα излучение). Твердость измерялась методом Виккерса на микротвердомере KB 30S.

Результаты и их обсуждение. Был проведен качественный и количественный анализ кристаллической структуры образцов оксида алюминия. По результатам исследований видно, что был получен образец оксида алюминия (однофазный) с ромбоэдрической решеткой (α-Al₂O₃), размер кристаллитов составил 113,63 нм. Образец имеет крайне высокий разброс по твердости керамики в зависимости от места индентации, Такой разброс обусловлен пористостью образца. При индентировании в наиболее плотных областях значение средней твердости по образцу составляет 12,47 ± 2,8 ГПа.

С помощью сканирующего электронного микроскопа Taskan Vega3 SBU, было выявлено наличие углерода в следах, которые остались вследствие разложения целлюлозы в процессе спекания. Целлюлоза имеет общую формулу $C_6H_{10}O_5$ в первой степени полимеризации, то при сжигании помимо возможного выделения летучих угдеводородов, воды и CO_2 , формируется остаточный углерод с сохранением «реплики» исходной структуры волокна [5, 6].

В дальнейшем, чтобы избавиться от углерода был произведен отжиг образца при температуре 1400°С в течение 5 часов. После того как был произведен отжиг, образец поменял свой цвет с темносерого на белый, что связанно с удалением углерода из образца. По данным рентгеноструктурного анализа в результате отжига вдвое был уменьшен размер кристаллитов с 113,63 до 48,06 нм. Параметры решетки остались практически идентичными с теми, что были до отжига. Изменилось микронапряжение с 0,001146 до 0,000886.

При этом морфология спеченных образцов изменилась – наблюдается формирование более крупных частиц порошка. В результате спекания происходит формирование спеченной структуры, характерной для оксида алюминия. Главным результатом стало именно удаление остаточного углерода.

Рис. 1. РЭМ-изображения образцов до (а) и после (б) спекания при 1400 °С в течение 5 часов

Твердость так же была измерена после отжига. Средняя твердость по образцу до отжига составляет 12,47 ± 2,8 Гпа, а после отжига – 12,76 ± 3,5 Гпа, что находится в пределах погрешности измерений. Таким образом, твердость образцов остается неизменной, не смотря на проведение термической обработки. Зависимость твердости от пористости носит случайный характер, однако с увеличением пористости увеличивается разброс значений твердости. В данном случае после спекания разброс увеличился, кроме того, по данным морфологии, можно отметить, что качественно наблюдается рост несплошностей между частицами, размер которых увеличился после спекания.

Заключение. Были исследованы материалы, полученные методом искрового плазменного спекания (ИПС) из прекерамических бумаг на основе целлюлозы, наполненные порошком Al_2O_3 . Было установлено, что после ИПС формируются темные образцы с остаточным аморфным углеродом. Дополнительное спекание позволило получить светлые безуглеродные образцы, что, однако, привело к изменению структуры материала. Влияние спекания на структуру образца несущественно и является типичным для исследуемого материала. Изменение структуры образца не приводит к существенному изменению твердости – значения до и после спекания находятся в пределах погрешности. Значения твердости соответствуют характерным значениям для Al_2O_3 [7], что указывает на высокую прочность межчастичных соединений после спекания и формирования монолитного каркаса, формирующего прочность изделий.

В дальнейшем планируется продолжить исследование полученных образцов, в частности установить влияние режимов термообработки на механические свойства образцов. В будущем будут использоваться различные технологии изготовления материалов на основе оксида алюминия, акцентированные на получение чистого водорода.

Исследование выполнено при финансовой поддержке Государственного задания в рамках научного проекта № FSWW-2021-0017.

- Sharma S., Ghoshal S.K., Hydrogen the future transportation fuel: from production to applications // Renew. Sustain. Energy Rev. – 2015. – № 43. – P. 1151–1158.
- Liang C.Z., Chung T.S., Lai J.Y., A review of polymeric composite membranes for gas separation and energy production // Prog. Polym. Sci. – 2019. – № 97. – P 101141.
- Tanaka D. A. P. et al. Metallic membranes for hydrogen separation // Current Trends and Future Developments on (Bio-) Membranes. – Elsevier, 2020. – P. 1-29.
- Neha Pal, Madhu Agarwal, Karishma Maheshwari, Yogendra Singh Solanki, A review on types, fabrication and support material of hydrogen separation membrane // Proceedings. – 2020. – № 28. – P. 1386–1391.
- Tang M. M., Bacon R. Carbonization of cellulose fibers—I. Low temperature pyrolysis // Carbon. 1964.
 Vol. 2. № 3. P. 211-220.
- Bacon R., Tang M. M. Carbonization of cellulose fibers—II. Physical property study // Carbon. 1964. Vol. 2. – №. 3. – P. 221-225.
- Ramesh S., Siah L. F., Nor Azmah A. K. Sintering behaviour of slip-cast Al2O3-Y-TZP composites // Journal of materials science. - 2000. - Vol. 35. - №. 21. - P. 5509-5515.

УДК 546.112

СИНТЕЗ МАТЕРИАЛА-НАКОПИТЕЛЯ ВОДОРОДА ТІ_{21,5}V₄₀CR_{38,5} МЕТОДОМ ПЛАВЛЕНИЯ В ПЛАЗМЕ АНОМАЛЬНОГО ТЛЕЮЩЕГО РАЗРЯДА

А.Е. Жданов, Т.Л. Мурашкина

Научный руководитель: к.т.н. М.С. Сыртанов

Национальный исследовательский Томский политехнический университет,

Россия, г. Томск, пр. Ленина, 30, 634050

E-mail: aez14@tpu.ru

SYNTHESIS OF TI_{21,5}V₄₀CR_{38,5} HYDROGEN STORAGE MATERIAL BY ABNORMAL GLOW DISCHARGE PLASMA METHOD

A.E. Zhdanov, T.L. Murashkina

Scientific Supervisor: Ph.D., M.S. Syrtanov

Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050

Email: aez14@tpu.ru

Abstract.: In the course of the work, $T_{i_{21.5}V_{40}}Cr_{38.5}$ samples were synthesized by two different methods: abnormal glow discharge plasma and arc melting. X-ray diffraction analysis shows the presence of the TiVCr main phase and Ti₂O phase. The phase composition of the alloy does not significantly change during annealing at 1400 °C for 48 hours. However, the annealing leads to the shift of the reflections on diffraction patterns that indicates stress relieving at high temperature.

Введение. Водород является одним из наиболее перспективных носителей возобновляемой энергии и, возможно, способствует созданию низкоуглеродистого общества. Одной из актуальных целей на сегодняшний день, является поиск оптимальных материалов для хранения водорода, которые могли бы иметь более высокую объемную плотность, чем сжатый и/или жидкий водород. Кроме того, очень важным критерием для системы хранения водорода является цикличность сорбции/десорбции водорода [1]. Материалы для хранения водорода являются ключевыми для реализации возобновляемой энергии. Интерметаллиды могут более безопасно хранить высокую плотность водорода по сравнению с системами хранения газообразного и жидкого водорода при комнатной температуре [2]. Одними из наиболее перспективных материалов накопителей водорода являются интерметаллиды на основе Ti благодаря своей доступности в РФ и емкости по водороду, которая составляет около 3.5-4 масс%. [3]. Целью данной работы являлось синтез сплава TiVCr методом плавления в плазме аномального тлеющего разряда и с помощью дугового плавления и исследование структурно-фазового состояния [4].

Материалы и методы исследования. Для синтеза материала со стехиометрией Ti_{21.5}V₄₀Cr_{38.5}, использовались порошки титана, ванадия и хрома. Для синтеза порошки были предварительно спрессованы холодным статическим одноосным методом в закрытой пресс-форме. Образцы были подготовлены сплавлением шихты из исходных компонентов на медном водоохлаждаемом поду электродуговой печи с не расходуемым вольфрамовым электродом и с помощью магнетрона. На следующем этапе проводился 48-часовой отжиг при температуре 1400 °C. Синтезированные сплавы до и после отжига были проанализированы методом рентгенофазового анализа.

Результаты и их обсуждение. На первом этапе работы методом рентгенофазового анализа были проанализированы образцы после синтеза. На втором этапе исследовались образцы подверженные

термической обработке при 1400 °C в течение 48 часов. Дифрактограммы синтезированных и отожжённых образцов полученных двумя методами представлены на рис. 1 и 2.

Рис. 1. Дифрактограммы сплава Ti_{21.5}V₄₀Cr_{38.5} полученного методом плаввления в плазме аномального тлеющего до (а) и после (б) высокотемпературного отжига при 1400 °C в течение 48 часов

Рис. 2. Дифрактограммы сплава Ti_{21.5}V₄₀Cr_{38.5} полученного методом электродуговой плавки до (a) и после (б) высокотемпературного отжига при 1400 °C в течение 48 часов

В результате синтеза методом плавления в плазме аномального тлеющего разряда на дифрактограмме наблюдаются рефлексы, относящиеся к основной фазе TiVCr с объемноцентрированной кубической решеткой, а также фазы оксида титана Ti2O с гексагональной плотноупакованной модификацией. Дифрактограмма образца, полученного методом дуговой плавки представлена такими же фазами TiVCr и Ti₂O. Формирование фазы оксида титана обусловлено наличием остаточного кислорода в реакционной камере как в случае метода электродуговой плавки, так и в плазме аномального тлеющего разряда. После отжига существенных изменений фазового состава в образцах не наблюдалось. Однако, анализ дифрактограмм показал, что отожжённым образцам присуще уменьшение ширины всех рефлексов, что указывает на снятие внутренних напряжений в анализируемых материалах.

Выводы. В ходе работы были синтезированы образцы Ti_{21.5}V₄₀Cr_{38.5} двумя различными методами: методом плавления в плазме аномального тлеющего разряда и с помощью дугового плавления. Анализ

фазового состояния сплавов показал наличие основной фазы TiVCr и фазы Ti₂O в обоих методах получения материалов. Установлено, что отжиг при температуре 1400 °C в течение не приводит к существенным изменениям фазового состава сплавов вне зависимости от метода синтеза. Выявлено, что в результате указанной термической обработки наблюдается уменьшение ширины всех рефлексов на дифрактограммах, что свидетельствует о снятии внутренних напряжений в полученных сплавах. На следующем этапе работы будут проведены исследованию по оценки сорбционных характеристик полученных сплавов.

Исследование выполнено при финансовой поддержке Государственного задания в рамках научного проекта № FSWW-2021-0017.

- Schlapbach L., Züttel A. Hydrogen-storage materials for mobile applications // Nature. 2001. Vol. 414. P. 353-358.
- Yang J., Sudik A.et al. High-capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery // Chemical Society Reviews. – 2010. – Is. 2. – P. 656-675.
- 3. Колачев Б.А., Шалин Р.Е., Ильин А.А. Сплавы-накопители водорода. Справочник. М.: Металлургия, 1995. 384 с.
- 4. Yukawa, H. Alloying effects on the hydriding properties of vanadium at low hydrogen pressures / H. Yukawa, A. Teshima, D. Yamashita [et al.] // Journal of Alloys and Compounds. 2002. V. 337. № 1–2. P. 264-268.

УДК 620.178.15: 539.536

ОРИЕНТАЦИОННАЯ ЗАВИСИМОСТЬ ПАРАМЕТРОВ ПОВЕРХНОСТНОГО УПРОЧНЕННОГО СЛОЯ, СФОРМИРОВАННОГО В МОНОКРИСТАЛЛАХ АУСТЕНИТНОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ ПРИ ИОННО-ПЛАЗМЕННОМ ВОЗДЕЙСТВИИ

Е.А. Загибалова^{1,2}, В.А. Москвина², А.С. Нифонтов^{1,2}

Научный руководитель: доцент, д.ф.-м.н. Е.Г. Астафурова², аспирант В.А. Москвина² ¹ Национальный исследовательский Томский политехнический университет,

Россия, г. Томск, пр. Ленина, 30, 634050

²Институт физики прочности и материаловедения СО РАН,

Россия, г. Томск, пр. Академический, 2/4, 634055

E-mail: zagibalova-lena99@mail.ru

ORIENTATIONAL DEPENDENCE OF THE PARAMETERS OF A SURFACE HARDENED LAYER FORMED IN AUSTENITIC STAINLESS STEEL SINGLE CRYSTALS UNDER ION-PLASMA INFLUENCE

<u>E.A. Zagibalova^{1,2}</u>, V.A. Moskvina², A.S. Nifontov^{1,2} Scientific Supervisors: Dr. E.G. Astafurova², PhD student V.A. Moskvina² ¹Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30 ²Institute of Strength Physics and Materials Science SB RAS, Russia, Tomsk, Akademichesky pr. 2/4

E-mail: zagibalova-lena99@mail.ru

Abstract. In this work, we revealed the orientation dependence of the parameters of the surface layer of austenitic stainless steel single crystals, which were processed by ion-plasma treatment (IPT). During the IPT of the steel at a temperature of 550° C, phase transformations are realized in the surface layers of the specimens. For <001> single crystal, the thickness of the surface hardened layers is greater than that for the <111> one.

Введение. Аустенитные нержавеющие стали (АНС) находят широкое применение в промышленности за счет хорошей коррозионной стойкости и пластичности. Недостатком АНС являются низкие твердость и износостойкость. Низкотемпературное ионно-плазменное азотирование (при T<450°C) в десятки раз повышает поверхностную твердость сталей при сохранении исходной коррозионной стойкости, за счет формирования в поверхности пересыщенного твердого раствора азота/углерода в аустените (S-фаза/Fe- $\gamma_{N,C}$). При диффузионном насыщении поликристаллов АНС глубина насыщения зависит от многих параметров, в том числе, от ориентации зерна по отношению к насыщаемой поверхности. О. Öztürk [1] при исследовании поликристаллов АНС после поверхностного насыщения азотом при 400°C выявили, что глубина поверхностного слоя в зернах с ориентацией <001> больше, чем в зернах с ориентацией <111>. Эту ориентационную зависимость глубины насыщения позднее подтвердили авторы [2] на монокристаллах АНС (T<450°C). В отношении исследования этого эффекта перспективными объектами для азотирования являются монокристаллы. Во-первых, использование монокристаллов исключает диффузию по границам, а во-вторых, позволяет исследовать особенности насыщения в пределах одной кристаллографической ориентации и установить ориентационную зависимость этого явления. В литературе эта зависимость в АНС рассмотрена в

интервале температур формирования S-фазы (350-430°C) и отсутствуют исследования в интервале температур распада S-фазы (>450°C). Целью этой работы является выявление ориентационной зависимости параметров упрочненного слоя, формируемого при ионно-плазменном диффузионном насыщении <111> и <001> монокристаллов аустенитной нержавеющей стали атомами внедрения (N и C) при 550°C.

Материалы и методы исследования. Объектами исследования были выбраны монокристаллы АНС (Fe-18,6Cr-16,8Ni-0,07Mn-0,07Si-0,001C вес. %) с ориентациями <001> и <111> вдоль нормали к обрабатываемой поверхности. Заготовки были закалены (1100°C) в течение часа с последующим охлаждением в воду. Ионно-плазменную обработку (ИПО) проводили на установке ЭЛУ-5 при температуре T=550°C и давлении P=300 Па в течение 12 часов, использовали смесь газов Ar+N₂+C₂H₂. Микроструктуру монокристаллов до и после насыщения исследовали с применением оптической металлографии (OM, Altami MET 1C). Фазовый состав образцов был определен с помощью методов дифракции обратнорассеянных электронов и сканирующей электронной микроскопии (ДОЭ, СЭМ, микроскоп Quanta 200 3D). Микротвердость образцов измеряли методом Виккерса с нагрузкой на индентор 25 г (Duramin 5).

Экспериментальные результаты. На рисунках 1 a и 1 e представлены металлографические изображения исходной микроструктуры <001> и <111> монокристаллов. Исходные образцы имеют однофазную аустенитную структуру, что подтверждается результатами ДОЭ-анализа, СЭМ и ОМ. После травления монокристаллов, подвергнутых ИПО, в поперечном к обрабатываемой поверхности сечении наблюдается поверхностно-упрочненная область (ПУО) и исходная аустенитная матрица. Согласно анализу ОМ изображений, в ПУО можно выделить две характерные зоны: поверхностные слои с сильной травимостью и подповерхностные слои со слабой травимостью (рис. 1 6, e).

Рис. 1. Металлографические изображения исходной микроструктуры монокристаллов АНС с ориентациями <001> и <111> (а, в) и протравленная микроструктура ПУО в поперечном сечении после ИПО (б, г). I – композиционный слой, II – диффузионный подслой, III – матрица монокристалла

Формирование подобной двухслойной ПУО при ИПО (550°С) ранее наблюдали в поликристаллах АНС [1], однако в случае обработки монокристаллов границы упрочненных областей более однородные [2]. ПУО в монокристаллах (рис. 1 *б*, *г*) имеют однородную и ровную границу, в отличии от слоев, полученных при насыщении поликристаллических образцов, где наблюдается волнообразная граница за счет локального изменения толщины слоя от зерна к зерну. В процессе ИПО растворение большого количества атомарного N и C в аустените в поверхности монокристаллов приводит к фазовым превращениям [1]. Различная травимость слоев связана с различным фазовым составом – поверхностный слой имеет композиционный состав, а подповерхностный – преимущественно однофазный, состоящий из легированного N и C аустенита. Для исследуемых монокристаллов морфология композиционных слоев различна. Это может свидетельствовать о том, что в них выделяются частицы различного состава и морфологии, либо они по-разному ориентированы по отношению к исследуемой поверхности, то есть существует строгая кристаллографическая связь

Россия, Томск, 26-29 апреля 2022 г.

Том 1. Физика

выделяемых частиц и матрицы. Для установления этих особенностей необходим детальный ПЭМ-анализ композиционных слоев в монокристаллах. Толщина ПУО в монокристаллах АНС, включающая композиционный слой и диффузионный подслой, отличается для <001> и <111> ориентаций: 43±2 мкм для <001>-монокристалла и 40±2 мкм для <111>-монокристалла. Толщина композиционных слоев составляет 19±1 мкм для <001>-монокристалла и 22±2 мкм для <111>-монокристалла. Монокристалла с ориентацией <001> имеет более протяженный диффузионный подслой, чем образец с ориентацией <111>.

На рисунке 2 представлены профили распределения микротвердости по глубине ПУО в монокристаллах АНС с ориентациями <001> и <111> (рис. 2 *a*, *б*). Профили распределения микротвердости по глубине коррелируют с результатами ОМ, но глубина профилей превышает таковую, установленную по ОМ.

Рис. 2. Профили распределения микротвердости по глубине упрочненных слоев в монокристаллах АНС с ориентациями <001> (a) и <111> (б) после ИПО при температуре 550°C

Наибольшие значения микротвердости наблюдаются вблизи поверхности: <001> - 1200 МПа и <111> – 1275 МПа. В диффузионном подслое наблюдается плавное снижение значений микротвердости по направлению от композиционного слоя к матрице. На профилях не наблюдается резких изменений значений микротвердости при переходе от композиционного слоя к диффузионному подслою и матрице. Для образцов с ориентацией <001> профиль с постепенным снижением значений микротвердости по глубине достигает \approx 55 мкм и выходит на «плато», а для ориентации <111> он составляет \approx 45 мкм. То есть экспериментально обнаружена ориентационная зависимость глубины насыщения образцов АНС атомами внедрения.

Заключение. При ИПО <001> и <111>-монокристаллов АНС (550°С) происходит формирование ПУО, толщина которых зависит от кристаллографической ориентации монокристалла по направлению к обрабатываемой поверхности. Глубина ПУО для <001>-монокристаллов больше (≈ 55 мкм), чем для <111>-монокристалла (≈ 45 мкм). Несмотря на то, что профили распределения микротвердости качественно имеют близкий характер, для <001>-монокристаллов характерно формирование более протяженного подповерхностного диффузионного слоя.

Авторы благодарны д.ф.-м.н. Чумлякову Ю.И. за предоставленные для исследования монокристаллы и д.т.н. Рамазанову К.Н. за помощь с проведением ионно-плазменной обработки.

- Öztürk O., Williamson D. L. Phase and composition depth distribution analyses of low energy, high flux N implanted stainless steel // Journal of Applied Physics. – 1995. – V. 77, №. 8. – P. 3839-3850.
- Martinavičius A., Abrasonis G., Möller W. Influence of crystal orientation and ion bombardment on the nitrogen diffusivity in single-crystalline austenitic stainless steel // Journal of Applied Physics. 2011. V. 110, №. 7. P. 074907.

УДК 538.9

ВЛИЯНИЕ ДЛИТЕЛЬНОСТИ МИКРОДУГОВОГО ОКСИДИРОВАНИЯ НА МОРФОЛОГИЮ И СТРУКТУРУ КАЛЬЦИЙ-ФОСФАТНЫХ ПОКРЫТИЙ

<u>Е.А. Казанцева^{1,2}</u>, Е.Б. Акимова³, Е.Г. Комарова² Научный руководитель: профессор, д.ф.-м.н. Ю.П. Шаркеев² ¹Национальный исследовательский Томский государственный университет, Россия, г. Томск, пр. Ленина 36, 634050 ²Институт физики прочности и материаловедения СО РАН, Россия, г. Томск, пр. Академический 2/4, 634055 ³Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина 30, 634050 E-mail: <u>kazantseva.ea@ispms.ru</u>

EFFECT OF DURATION OF MICRO-ARC OXIDATION ON MORPHOLOGY AND STRUCTURE OF THE CALCIUM PHOSPHATE COATINGS

<u>E.A. Kazantseva^{1,2}</u>, E.B. Akimova³, E.G. Komarova² Scientific Supervisor: Prof., Dr. Yu.P. Sharkeev²

¹Tomsk State University, Russia, Tomsk, Lenina pr., 36, 634050

²Institute of Strength Physics and Materials Science SB RAS, Russia, Tomsk, Akademicheskii pr., 2/4, 634055

³Tomsk Polytechnic University, Russia, Tomsk, Lenina pr., 30, 634050

E-mail: kazantseva.ea@ispms.ru

Abstract. In the present study, we performed the study by scanning electron microscopy (SEM) of the effect of the micro-arc oxidation (MAO) duration on the morphology and structure of the calcium phosphate (CaP) coatings. The increase in the MAO time from 2 to 10 min led to the formation of homogeneous by thickness coatings, to the thickness growth from 28.6 μ m to 50.6 μ m, to an increase of the average sizes of spheres and pores in the ranges of 8.7-17.2 μ m and 1.4-3.2 μ m, respectively, to a decrease of the inner porosity from 33.8 to 24.3 %, and did not affect the value of the surface porosity, which was varied from 16.1 to 18.1 %.

Введение. Одним из эффективных методов функционализации поверхности медицинских имплантатов является метод микродугового оксидирования (МДО), который позволяет осаждать биоактивные кальций-фосфатные (КФ) покрытия на металлические изделия различных форм и размеров. Управляя технологическими параметрами МДО: составом электролита, длительностью нанесения, электрофизическими параметрами, – можно регулировать морфологию, структуру, состав и эксплуатационные свойства формируемых покрытий [1, 2]. Целью настоящей работы было исследование влияния длительности МДО на морфологию и структуру формируемых КФ покрытий.

Экспериментальная часть. КФ покрытия формировали методом МДО на установке «MicroArc-3.0» на поверхности образцов из чистого титана марки ВТ1-0. Электролит был следующего состава: H₃PO₄ (27 мас.%), CaCO₃ (7 мас.%), Ca₁₀(PO₄)₆(OH)₂ (5 мас.%). Технологические параметры МДО были следующие: длительность импульсов – 100 мкс, частота – 50 Гц, анодное напряжение – 200 В,

варьировали длительность нанесения покрытий - 1, 2, 4 и 10 мин. Морфологию и структуру КФпокрытий исследовали методом растровой электронной микроскопии (РЭМ, Zeiss LEO EVO 50, ЦКП «Нанотех» ИФПМ СО РАН). С помощью РЭМ-изображений определяли размеры структурных элементов методом «секущей» и рассчитывали пористость металлографическим методом, как отношение площади изображения, приходящегося на поры, к общей площади микрофотографии. Статистический анализ данных размеров структурных элементов был выполнен путем построения диаграмм размаха (box plot), где квартили Q1 и Q3 – нижняя и верхняя грани прямоугольника, квартиль Q2 (медиана) – горизонтальная линия, пересекающая прямоугольник, а среднее значение - внутренний квадрат. Согласно ГОСТ Р ИСО 16269-4-2017, верхнюю и нижнюю границы распределений, отделяющих выбросы, вычисляли по формуле: $Q_1 \pm k (Q_3 - Q_1)$, где k = 1,5 использовали для нормальных распределений и границы распределения называли внутренними, а k = 3 - для распределений, отличающихся от нормальных, и границы распределения называли внешними. Нормальность распределений оценивалась с помощью критерия Колмогорова-Смирнова с поправкой Лиллиефорса при уровне значимости p < 0.05. При описании нормального распределения для определения центральной тенденции использовали среднее значение и стандартное отклонение, а медиану и межквартильный диапазон (Q1-Q3) – для распределений, не соответствующих нормальному.

Результаты. На РЭМ-изображениях поперечного излома и поверхности КФ покрытия (рис. 1 а), можно видеть, что в течение 1 мин формируется неоднородное покрытие, толщина которого варьируется от 6,9 до 15,5 мкм. При этом на поверхности покрытия также наблюдается разнородная структура в виде областей, содержащих зародыши структурных элементов полусферической формы с внутренними порами, и областей с многочисленными кратерообразные микропорами. Предположительно, в первом случае, эти области соответствуют областям начального формирования КФ слоя покрытия, в то время как в других областях наблюдается модифицированный оксидный слой на поверхности титана. Увеличение времени нанесения до 2 мин приводит к формированию уже однородного по толщине покрытия ($28,6 \pm 1,3$ мкм) с большим количеством разветвленных внутренних пор и поровых каналов, хаотично распределенных по толщине. На поверхности покрытия присутствуют полностью сформировавшиеся сфероидальные структурные элементы (сферы) с внутренними порами и поры в пространствах между сферами (рис. 1 б). При дальнейшем увеличении времени нанесения покрытий в интервале 4-10 мин не наблюдаются значительные изменения во внутренней и поверхностной морфологии, однако растет толщина покрытий от $35,6 \pm 1,1$ мкм до $50,6 \pm 4,2$ мкм и увеличиваются размеры структурных элементов (сфер, пор) (рис. 1 в).

Рис. 1. РЭМ-изображения поверхностей и поперечных изломов МДО покрытий в течение: (a) – 1 мин; (б) – 2 мин; (в) – 10 мин

На рис. 2 а представлены диаграммы размаха (box-plot) размеров сфер. Все распределения сфер по размерам являются нормальными, поэтому для построения нижней и верхней границ диаграмм размаха использовали внутренние границы. С увеличением длительности нанесения покрытий от 2 до 10 мин наблюдается уширение диапазона размеров сфер от 2,2-16,6 мкм до 1,9-31,7 мкм, что приводит к росту среднего размера сфер от $8,7 \pm 2,7$ мкм до $17,2 \pm 5,5$ мкм. На рис. 2 б приведены диаграммы размаха (box-plot) размеров поверхностных и внутренних пор. При этом распределения размеров пор получились несимметричными, что можно видеть из смещения их межквартильного размаха в сторону меньших значений, поэтому для построения нижней и верхней границ диаграмм размаха использовали внешние границы. С увеличением длительности нанесения покрытий от 2 до 10 мин наблюдается уширение диапазона размеров поверхностных и внутренних пор соответственно от 0,2-8,5 до 0,6-13,1 мкм и от 0,2-5,1 мкм до 0,7-9,9 мкм. При этом медианы распределений поверхностных и внутренних пор по размерам увеличиваются соответственно от 2,3 (1,5-3,3) мкм до 3,2 (2,0-4,8) мкм и от 1,3 (0,9-2,0) мкм до 2,9 (2,0-4,0) мкм.

Рис. 2. Диаграммы размаха размеров сфер (а) и пор (б) КФ покрытий, и пористость КФ покрытий (в)

Измерения пористости покрытий показали, что с увеличением длительности процесса МДО от 2 до 10 мин внутренняя пористость покрытий уменьшается от $33,8 \pm 6,9$ % до $24,3 \pm 2,5$ %. Это может быть связано с тем, что во всех покрытиях формируются более крупные поры вблизи подложки в начальной стадии процесса, когда плотность тока выше и микроразряды интенсивнее. Эти данные хорошо согласуются с предыдущими результатами [2], где показан структурный градиент по размерам пор. В то же время, морфологические изменения на поверхности покрытий с увеличением времени процесса МДО (2, 4, 10 мин) не привели к статистически значимому изменению поверхностной пористости, которая составила соответственно 16,1 ± 3,1 %, 17,9 ± 2,2 %, 18,1 ± 0,9 % (рис. 2 в). Это может быть связано с одновременным увеличением размеров поровых пространств и сфер на поверхности покрытий.

Заключение. В данной работе было показано, что увеличение длительности осаждения покрытий от 2 до 10 мин приводит к формированию однородного по толщине покрытия, росту толщины от 28,6 мкм до 50,6 мкм, увеличению средних размеров сфер и пор соответственно в диапазонах 8,7-17,2 мкм и 1,4-3,2 мкм, увеличению внутренней пористости от 33,8 до 24,3 %, и не повлияло на величину поверхностной пористости, которая варьировалась в диапазоне 16,1-18,1%.

Исследование выполнено за счет гранта Российского научного фонда № 21-73-10265.

СПИСОК ЛИТЕРАТУРЫ

- M. Molaei, A. Fattah-alhosseini, M. Nouri, A. Nourian. Systematic optimization of corrosion, bioactivity, and biocompatibility behaviors of calcium-phosphate plasma electrolytic oxidation (PEO) coatings on titanium substrates // Ceramics International. – 2022. – V. 48. – P. 6322-6337.
- E.A. Kazantseva, E.G. Komarova, Yu.P. Sharkeev. Structural and morphological features of the ultrasoundassisted micro-arc oxidation coatings // AIP Conference Proceedings. – 2019. – V. 2167. – P. 020156(4).

УДК 539:538.91

СТРУКТУРНЫЕ И МОРФОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОРИСТЫХ МАТЕРИАЛОВ ТINI-TI-CO

<u>М.И. Кафтаранова</u>, С.Г. Аникеев, В.Н. Ходоренко Национальный исследовательский Томский государственный университет, Россия, г. Томск, пр. Ленина, 36, 634050 E-mail: <u>kaftaranovami@gmail.com</u>

STRUCTURAL AND MORPHOLOGICAL CHARACTERISTICS OF TINI-TI-CO POROUS MATERIALS

<u>M.I. Kaftaranova</u>, S.G. Anikeev, V.N. Khodorenko Tomsk State University, Russia, Tomsk, Lenin str., 36, 634050 E-mail: kaftaranovami@gmail.com

Abstract. The transition-chemical composition of TiNi–Ti-Co alloys has been studied. The possibility of adjusting the atomic composition of TiNi by introducing Ti from 5 to 10 at. % and the use of Co in crime 0.6 at.%. Structural-reciprocal and morphological features of TiNi–Ti-Co alloys obtained by diffusion sintering with characteristic transformation temperatures have been studied.

Введение. По совокупности конструкционных и функциональных свойств одними из эталонных среди широкого спектра имплантационных материалов являются сплавы на основе никелида титана. Пористые сплавы на основе никелида титана, полученные методами спекания, являются яркими представителями данного класса материалов. Так как ткани организма представляют собой сложную биологическую систему, которая реагирует на введение имплантата изменением собственной структуры вплоть до разрушения, поэтому эластичное поведение живых тканей организма диктует современным материаловедам критерии создания имплантируемых в организм человека материалов. Оптимальный имплантат должен проявлять высокие эластичные свойства, а степень и величина формы должны соответствовать необходимой степени и величине восстановления формы тканей, что обеспечит его биомеханическую совместимость.

На сегодняшний день пористые материалы активно используются в челюстно-лицевой хирургии, онкологии, стоматологии, где призваны решать сложнейшие медицинские задачи [1,2]. Данный способ дает очень высокую точность изготовления получаемой продукции и обеспечивает высокие значения физико-механических свойств. Изделия, произведенные методами диффузионного спекания, требуют минимальной механической обработки. Это позволяет минимизировать производственные отходы при изготовлении имплантатов.

Использование при спекании только однокомпонентной порошковой системы никелида титана влечет за собой обеднение по Ті готового материала ТіNi из-за процессов окисления и образования большого количества частиц Ti_2Ni и $Ti_4Ni_2(O,N,C)$ во время высокотемпературной выдержки [3-5]. При этом фазовое мартенситное превращение не завершается вплоть до температур 123 К. В работе [3] установлено, что совместное спекание порошка никелида титана и добавок Ті позволяет скомпенсировать

обеднение соединения TiNi по Ti и выровнять матричную фазу, ответственную за реализацию мартенситных превращений, по химическому составу. Однако, как показано в работе [6] наряду с однородной по химическому составу матрицей TiNi в сплавах наблюдается выделение большого количества частиц, обогащенных по титану Ti₂Ni и Ti₄Ni₂O, а также прослоек фазы Ti₂Ni вдоль границ зерен. Это приводит к снижению прочностных и пластических свойств сплава и его охрупчиванию.

Авторами работы предложена возможность корректировки объемного содержания фазы Ti₂Ni за счет вовлечения титана в формирование фаз с Co, а следовательно, и направленного регулирования температурного интервала фазовых превращений при ведении дополнительных активирующих добавок Co в концентрации 0,6 ат. %.

Экспериментальная часть. Экспериментальные образцы сплавов на основе никелида титана с добавками Ті и Со получены из порошков ТiNi (PV–N55T45) и Тi (PTEM-1), порошка Со. Для исследования влияния добавок Тi, Со использован интервал концентраций добавки Ti 5.0; 7.5; 10 at. % сверх навески никелида титана добавка Со составила 0,6 ат.%. Размер частиц порошка никелида титана в пределах 100 – 160 мкм. Порошковую смесь просушивали, смешивали и засыпали с начальной пористостью 60–70 % в кварцевые капсулы, которые имели внутренний диаметр 13–14 мм и длину 65–80 мм. Спекание капсул с порошковой насыпкой проводили в горизонтальном положении в электровакуумной печи СНВЭ–1.31/16–И4 в течение 15 мин при температуре 1255±5°C. Данный температурно-временной режим позволяет получать пористые материалы с оптимальной степенью спекания.

Структурные особенности сплавов исследовали методом растровой электронной микроскопии на микроскопе (SEM) в режиме вторичных (SE) и обратно-отраженных электронов (BSE) Quanta 200 3D с энергодисперсионным спектрометром EDAX ECON IV и просвечивающей электронной микроскопии (ПЭМ) на микроскопе (TEM) Hitachi HT-7700. Последовательность и характеристические температуры МП изучали методами определения температурной зависимости удельного электросопротивления (СИЭС-30).

Результаты. Методом просвечивающей электронной микроскопии экспериментально установлено, что для всех пористых сплавов характерен одинаковый фазовый состав. Обнаружены и идентифицированы фазы TiNi(B2), Ti₂Ni, TiNi(B19'), Ti₃Ni₄ и аморфный слой на поверхности образца TiO₂.

Ранее в работах [3, 6] методом растровой электронной микроскопии было показано, что для сплавов TiNi–Ti при увеличении добавки Ti от 5 до 10 at. % Ti фаза Ti₂Ni приобретает отличительные морфологические признаки. В сплавах с добавками Ti до 5 at. % Ti фаза Ti₂Ni представлена в виде отдельных фаз круглой и пирамидальной форм, а также прослоек фазы Ti₂Ni вокруг отдельных зерен. С повышением добавки до 10 at. % Ti увеличивается количество расплава Ti₂Ni, который вовлекает отдельные крупные и мелкие частицы, обогащенные по титану, и приводит к формированию дендритной структуры Ti₂Ni–TiNi. Объемная доля фазы Ti₂Ni в сплаве TiNi+5 ат. % Ti составляла соответственно 12,7 %, TiNi+7,5 ат. % Ti составляет 16,3%, в сплаве TiNi+10 ат. %Ti наблюдается избыточное количество фазы Ti₂Ni соответственно 25,3 %. Вероятнее всего выделение столь большого количества вторичной фазы приведет к снижению его физико-механических свойств и охрупчиванию материала. Анализ характеристической температуры B2 \leftrightarrow R фазового превращения показал, что введение дополнительных добавок Ti позволяет добиться ее смещения в область более высоких значений и составляет приблизительно 330 К для всей группы исследуемых материалов.

Анализ структурных характеристик исследуемых сплавов показал, что введение дополнительных активирующих добавок Со в спекаемую систему порошка TiNi позволяет плавно регулировать количество фазы Ti₂Ni за счет вовлечения титана в формирование фаз с Co. Доказательством этого высказывание служит снижение количество фазы Ti₂Ni в сплаве TiNi+5 ат. % Ti до 13 %.

Комплексное и всестороннее исследование кривых удельного электросопротивления показало, что введение добавок Со оказывают плавное влияние на температуры мартенситного превращения. Установлено, что в сплаве TiNi+5Ti+0,6Co за счет выравнивания химического состава матрицы при введении добавки Ti и перераспределения фаз Ti₂Ni не наблюдается скачкообразного изменения температуры B2 \leftrightarrow R превращения, ее значения, как и в материале TiNi+5Ti находятся в пределах 330К.

Заключение. Исследован фазово-химический состав сплавов TiNi–Ti-Co. Установлено, что для всех пористых сплавов характерен одинаковый фазовый состав. Обнаружены и идентифицированы фазы TiNi(B2), Ti₂Ni, TiNi(B19'), Ti₃Ni₄ и аморфный слой на поверхности образца TiO₂. Установлено, что использование различных концентраций добавок Ti позволяет выровнять по химическому составу компонент фазу TiNi, ответственную за реализацию мартенситного превращения. На примере сплава TiNi+5Ti+0,6Co показано, что введение активирующих добавок Co позволило за счет вовлечения титана в формирование фаз с Co скорректировать избыточное количество фаз Ti₂Ni. Показано, что введением добавок Ti, Co можно оказывать плавное влияние на температуры мартенситных превращений.

Исследование выполнено за счет гранта Российского научного фонда (проект 19-79-10045).

- Гюнтер В.Э. Медицинские материалы и имплантаты с памятью формы. Томск: Издательство МИЦ, 2011. – 534 с.
- Гюнтер В.Э. Никелид титана. Медицинский материал нового поколения. Томск: Издательство МИЦ, 2006. – 296 с.
- Anikeev S.G., Artyukhova N.V., Shabalina A.V., Kulinich S.A., Hodorenko V.N., Kaftaranova M.I., Promakhov V.V., Gunter V.E. Preparation of porous TiNi-Ti alloy by diffusion sintering method and study of its composition, structure and martensitic transformations. Journal of Alloys and Compounds. – 2022. – V. 900. – 163559.
- Касимцев А.В., Маркова Г.В., Шуйцев А.В., Левинский Ю.В, Свиридова Т.А., Апатов А.В. Порошковый гидридно-кальциевый интерметаллид TiNi. Теория и процессы формования и спекания порошковых материалов. – 2014. – №3. – С. 31-37.
- Kasimtsev A.V., Markova G.V., Shuitcev A.V., Levinskii Yu.V., Sviridova T. A., Alpatov A.V. Change in structure during consolidation of calcium hydride powders of TiNi, intermetallic. Metallurgist. – 2015. –V. 58.– P. 1038-1045.
- Anikeev S.G., Kaftaranova M.I., Khodorenko V.N., Kryuchkova N.V., Garin A.S., Gyunter V.E. Effect of titanium additions on structural aspects of porous TiNi-based materials prepared by diffusion sintering. Inorg. Mater. – 2020. – 56 (9). – P. 918-92.

УДК: 666.3-13

ФОРМИРОВАНИЕ ЛАМИНИРОВАННЫХ КОМПОЗИТОВ Nb/TI₃AI(Si)C₂-TiC МЕТОДОМ ИСКРОВОГО ПЛАЗМЕННОГО СПЕКАНИЯ

<u>Е.Б. Кашкаров</u>, А.В. Абдульменова Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: ebk@tpu.ru

FABRICATION OF LAMINATED Nb/TI₃Al(Si)C₂-TiC COMPOSITES BY SPARK PLASMA SINTERING

<u>E.B. Kashkarov</u>, A.V. Abdulmenova Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: ebk@tpu.ru

Abstract. For the first time, laminated Nb/Ti₃Al(Si)C₂-TiC composites were fabricated from Nb metal foils and preceramic papers with MAX phase (Ti₃Al(Si)C₂) powder filler. The fabrication was performed using spark plasma sintering (SPS) at the temperature of 1250 °C, pressure of 50 MPa for 5 min. The microstructure and phase composition were analyzed by scanning electron microscopy and X-ray diffraction, respectively. The structure of composites is represented by Nb metal layers and ceramic layers separated by interdiffusion layers. It was found that the interlayers formed during SPS due to interdiffusion of Nb from metallic layer and mainly Al, Si from the MAX-phase based layer. The interdiffusion results in partial decomposition of the MAX-phase in ceramic layer.

Введение. МАХ-фазы и композиты на их основе представляют сравнительно новый класс материалов, описываемый общей формулой M_{n+1}AX_n, где М – переходный металл, А – металл IIIА или IVA периодической таблицы, X – углерод или азот. Они обладают уникальными свойствами металлов и керамики, такими как высокая температура плавления, малая плотность, высокая прочность и коррозионная стойкость, высокая тепло- и электропроводность [1]. На сегодняшний день, композитные материалы на основе МАХ-фаз являются многообещающими кандидатами для применения в энергетических и транспортных отраслях [2]. Несмотря на их высокие прочностные свойства, применение таких композитов в промышленности ограничено из-за их хрупкости при низких температурах. Существуют разные подходы для повышения трещиностойкости и улучшения механических свойств [3]. Одним из способов, является создание металл/керамических слоистых композитов [4]. Для получения таких композитов был предложен подход, основанный на применении прекерамических бумаг с порошковым наполнителем и металлических фольг из пластичного тугоплавкого металла (ниобия). Для снижения взаимодействия между слоями металла и керамики может быть использован метод искрового плазменного спекания, обеспечивающий высокоскоростной синтез плотных композитов [3]. Целью настоящей работы является получение новых металл/керамических композитов из прекерамических бумаг с порошковым наполнителем из MAX-фазы (Ti₃Al(Si)C₂) и металлических фольг ниобия методом искрового плазменного спекания.

Материалы и методы. Ламинированные композиты были сформированы из прекерамических бумаг с порошковым наполнителем $Ti_3Al(Si)C_2$ с помощью бумагоделательной машины D7 (Sumet Systems GmbH). Подготовленные бумаги имели следующий состав: 7,3 масс.% волокон целлюлозы, 87 масс.% порошка $Ti_3Al_{0,75}Si_{0,25}C_2$, 3 масс.% порошка Al_2O_3 и 2,7 масс.% добавок для удержания. Ламинированные композиты синтезировались методом искрового плазменного спекания в вакуумной среде на установке SPS 10-4 (GT Advanced Technologies) при температуре 1250 °C и давлении 50 МПа в течении 5 минут. Микроструктура и элементный состав полученных образцов анализировался методом сканирующей электронной микроскопии (СЭМ) на установке Vega 3 (Tescan). Структурно-фазовый состав образцов исследовался методом рентгеновской дифракции на дифрактометре XRD-7000S (Shimadzu) Для идентификации фаз использовалась база данных ICDD PDF4+ 2021.

Результаты. На рисунке 1а показана микроструктура полученного композита. Можно заметить, чередование керамических слоев, сформированных из прекерамических бумаг, толщиной ~95 мкм и металлических слоев из Nb толщиной ~82 мкм. На границе раздела металл/керамика формируется реакционный слой, обогащённый ниобием, алюминием и кремнием толщиной ~15 мкм. Формирование данного слоя обусловлено взаимной диффузией элементов MAX-фазы (преимущественно Al и Si) и Nb.

Рис. 1. (а) СЭМ изображение поперечного сечения ламинированного композита Nb/Ti₃Al(Si)C₂; (б) карта ЭДС

Исходная прекерамическая бумага состоит из кристаллических фаз $Ti_3Al(Si)C_2$ (90 об.%), TiC и Al_2O_3 , соответствующих порошковому наполнителю, а также аморфной фазы, соответствующей органическим волокнам целлюлозы (рис. 2a). Ниобиевая фольга состоит из α -фазы Nb с объемноцентрированной кубической решеткой (рис. 2б).

Рис. 2. Дифрактограммы исходных (а) прекерамической бумаги и (б) ниобиевой фольги

Анализ дифракционных картин показал, что в структуре ламинированного композита после спекания присутствуют фазы $Ti_3Al(Si)C_2$, TiC и α -Nb (рис. 3). Фазы $Ti_3Al(Si)C_2$ и TiC соответствуют керамическим слоям, а ниобий слоям металлических фольг. Стоит отметить, отсутствие фаз оксида алюминия и кристаллических фаз реакционного слоя из-за их относительно невысокого содержания в композите.

Рис. 3. Дифрактограмма полученного композита Nb/Ti₃Al(Si)C₂-TiC

Наблюдалось уменьшение содержания MAX-фазы в керамических слоях (соотношения $Ti_3Al(Si)C_2$ к TiC в сравнении с исходной прекерамической бумагой), что указывает на частичное разложение $Ti_3Al(Si)C_2$ до TiC, в результате которого освободившиеся Al и Si диффундировали в металлические слои Nb (табл. 1).

Таблица 1

Образец	Фаза	Concernation deput of %	Параметры решетки	
		Содержание фазы, 00.76	a, Å	c, Å
Nb/Ti ₃ Al(Si)C ₂	$Ti_3Al(Si)C_2(\Gamma\Pi Y)$	19	3,0847	17,8784
	ТіС (ГЦК)	41	4,3125	4,3125
	Nb (ОЦК)	40	3,3001	3,3001

Содержание фаз в композите после спекания

Заключение. Были получены новые металл/керамические ламинированные композиты Nb/Ti₃Al(Si)C₂-TiC методом искрового плазменного спекания. Показано, что в результате спекания происходит взаимная диффузия между металлическими слоями Nb и керамическими слоями на основе Ti₃Al(Si)C₂, в результате которой формируется диффузионный слой толщиной ~15 мкм, обогащенный Nb, Al и Si. При взаимодействии слоев наблюдается частичное разложение MAX-фазы Ti₃Al(Si)C₂. Предложенный подход, основанный на применении прекерамических бумаг и металлических фольг, может быть использован для получения многослойных ламинированных металл/керамических композитов.

Исследование выполнено в рамках гранта Президента Российской Федерации, проект МК-1048.2022.4.

- Barsoum M. W., Radovic M. Elastic and mechanical properties of the MAX phases // Annu. Rev. Mater. Res. - 2011. - Vol. 41. - P. 195-227.
- Xu L., Zhu D., Liu Y., Suzuki T. S., Kim B. N., Sakka Y., Grasso S., Hu C. Effect of texture on oxidation resistance of Ti₃AlC₂ // J. Eur. Cer. Soc. – 2018. – Vol. 38, No. 10. – P. 3417-3423.
- Krotkevich D. G., Kashkarov E. B., Syrtanov M. S. et al. Preceramic paper-derived Ti₃Al(Si)C₂-based composites obtained by spark plasma sintering // Cer. Int. – 2021. – Vol. 47, No. 9. – P. 12221-12227.
- Bai Y., Sun M., Cheng L., Fan S. Developing high toughness laminated HfB₂-SiC ceramics with ductile Nb interlayer // Cer. Int. – 2019. – Vol. 45, No. 16. – P. 20977-20982.

УДК 669.018.2:539.4.016.3

ЭВОЛЮЦИЯ ЗЕРЕННОЙ СТРУКТУРЫ АУСТЕНИТНОЙ СТАЛИ ЭК-164 В РЕЗУЛЬТАТЕ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ

А.В. Ким, С.А. Аккузин

Научный руководитель: доцент, д.ф.-м..н. И.Ю. Литовченко Национальный исследовательский Томский государственный университет, Россия, г. Томск, пр. Ленина, 36, 634050 E-mail: aneeta.2001@list.ru

EVOLUTION OF THE GRAIN STRUCTURE OF AUSTENITIC STEEL EK-164 AS A RESULT OF THERMOMECHANICAL TREATMENT

<u>A.V. Kim</u>, S.A. Akkuzin Scientific Supervisor: assistant professor, Dr. I.Yu. Litovchenko Tomsk State University, Russia, Tomsk, Lenin str., 36, 634050 E-mail: aneeta.2001@list.ru

Abstract. The influence of high-temperature thermomechanical treatments (HTMT) on grain structure of reactor austenitic steel EK-164 has been studied. It is shown that as a result of hot deformation grains stretch in the rolling direction and flatten in the rolling plane with a decrease of their average size by several times. The studied HTMOs lead to an increase in yield strength with a decrease in relative elongation.

Введение. Аустенитная сталь ЭК-164 в настоящее время используется в качестве материала для оболочек тепловыделяющих элементов ядерных реакторов (БН-600, БН-800 и др.). Высокое содержание в ней никеля и карбидообразующих элементов обеспечивает высокую стабильность стали по отношению к мартенситным превращениям в условиях холодной пластической деформации [1]. Термомеханические обработки являются одним из способов модификации микроструктуры аустенитных сталей с целью повышения их прочностных свойств [2, 3]. Влияние таких обработок на стали ЭК-164 малоизучено.

Измельчение зеренной структуры позволяет повышать прочностные свойства аустенитных сталей при сохранении достаточного запаса пластичности. В связи с этим, в настоящей работе исследуется влияние высокотемпературных термомеханических обработок (ВТМО) на зеренную структуру и механические свойства аустенитной стали ЭК-164.

Материалы и методы исследования. В настоящей работе исследована хромоникелевая стабильная аустенитная сталь ЭК-164 (07Х16Н19М2Г2БТР) в исходном состоянии и после ВТМО. Исходное состояние (~ 100 % аустенита) получено закалкой T = 1100 °C, 1 час.

Проведенные термомеханические обработки: горячая пластическая деформация прокаткой с нагревом до 1100 °C со степенью деформации ≈ 50 % за 1 проход (BTMO-1); BTMO-1 с последующей деформацией прокаткой с нагревом до 900 °C с общей деформацией $\approx 50\%$ за 1 проход (BTMO-2).

Механические испытания осуществляли при комнатной температуре методом активного растяжения с использованием образцов в форме двойных лопаток с размерами рабочей части 13×2×1 мм. Поврежденный слой удалялся механической шлифовкой с последующей полировкой. Для

металлографических исследований полированная поверхность травилась в растворе 120 мл HNO₃ + 80 мл H₂O при напряжении 4,5 B, 10 с. Металлографические исследования проводили с использованием оптического микроскопа Olympus GX71. Средние размеры аустенитных зерен из данных оптической металлографии определялись с использованием программного обеспечения Altami Studio.

Результаты. Показано, что в исходном состоянии средний размер зерна ~ 19,8 мкм (Рис. 1). Минимальный размер зерен ~ 4,2 мкм, максимальный ~ 73,2 мкм. Присутствуют частицы карбидов типа МХ (где М – V, Ті или Nb, Х – С или N) различных размеров: относительно мелких - менее 1 мкм и относительно крупных – в несколько микрон. Внутри отдельных зерен обнаружены двойники отжига.

Рис. 1. Зеренная структура стали в исходном состоянии

Металлографические исследования показали (Рис. 2), что ВТМО-1 приводит к изменению зеренной структуры. Средний размер зерна в сечении параллельном плоскости прокатки увеличивается до ~ 31,9 мкм. Минимальный и максимальный размеры зерна в этом сечении составляют ~ 7,11 и ~ 85,9 мкм, соответственно, что превышает соответствующие значения в исходном состоянии. В сечении перпендикулярном плоскости прокатки зерна вытягиваются в направлении прокатки, их средний поперечный размер уменьшается и составляет 8,4 мкм.

Рис. 2. Зеренная структура стали после ВТМО-1: а) Параллельное сечение; б) Перпендикулярное сечение

ВТМО-2 приводит к более значительному изменению зеренной структуры (Рис. 3). Средний размер зерен в сечении, параллельном плоскости прокатки составляет ~ 36,3 мкм, минимальный ~ 6,45 мкм, максимальный ~ 94,7 мкм. Зерна дополнительно сплющиваются в плоскости и вытягиваются в

направлении прокатки. Наблюдаются вытянутые относительно крупные зерна, окруженные мелкими зернами. Средний поперечный размер зерен в перпендикулярном сечении уменьшается до 5 мкм.

Рис. 3. Зеренная структура стали после ВТМО-2: а) Параллельное сечение; б) Перпендикулярное сечение

Полученная в результате изученных обработок структура обеспечивает повышение предела текучести стали с ~ 230 МПа (в исходном состоянии) до ~ 426 МПа и ~ 643 МПа после ВТМО-1 и ВТМО-2, соответственно. При этом относительное удлинение уменьшается с ~ 50% до ~ 23.4% и ~ 11.4% соответственно. При этом изменение прочностных и пластических свойств стали в результате ВТМО обусловлено не только модификацией зеренной структуры, но и повышением плотности дислокаций [4].

Заключение. Показано, что ВТМО приводит к изменению зеренной структуры реакторной аустенитной стали ЭК-164. При этом исходные практически равноосные зерна вытягиваются в направлении прокатки и сплющиваются в плоскости прокатки со значительным (в \approx 2,4 и \approx 4 раза) уменьшением их средних поперечных размеров. Указанные изменения зеренной структуры способствуют повышению предела текучести в \approx 1,9 и \approx 2,8 раза при соответствующем уменьшении пластичности.

- Аккузин С.А., Литовченко И.Ю. Влияние температуры пластической деформации на микроструктуру и механические свойства аустенитной стали ЭК-164 // Вектор науки Тольяттинского государственного университета. – 2020. – №2. – С. 7–14.
- Torganchuk V., Belyakov A., Kaibyshev R. Effect of rolling temperature on microstructure and mechanical properties of 18%Mn TWIP/TRIP steels // Materials Science and Engineering A. – 2017. – Vol. 708. – P. 110–117.
- Аккузин С.А., Литовченко И.Ю. Влияние деформации и кратковременных высокотемпературных отжигов на микроструктуру и механические свойства аустенитной стали 02X17H14M3 // Известия ВУЗов. Физика. – 2019. – Т. 62. – № 8. – С.190–195.
- Akkuzin S.A., Litovchenko I.Yu., Polekhina N.A., Almaeva K.V., Kim A.V., Moskvichev E.N., Chernov V.M. Effect of multistage high temperature thermomechanical treatment on the microstructure and mechanical properties of austenitic reactor steel // Metals. 2022. Vol. 12, № 1. P. 63-1–63-16.

УДК 620.186:669.716

ОРГАНИЗАЦИЯ СТРУКТУРЫ АЛЮМИНИЕВОГО СПЛАВА АМГ5 ПРИ МОДИФИКАЦИИ ПОРОШКОМ ЖЕЛЕЗА МЕТОДОМ ФРИКЦИОННОЙ ПЕРЕМЕШИВАЮЩЕЙ ОБРАБОТКИ

Е.О. Княжев, Т.А. Калашникова, А.В. Чумаевский Научный руководитель: д.т.н. Е.А. Колубаев Институт физики прочности и материаловедения СО РАН Россия, г. Томск, пр. Академический, 2/4, 634055 E-mail: clothoid@ispms.ru

ORGANIZATION OF THE STRUCTURE OF AMg5 ALUMINUM ALLOY MODIFIED WITH IRON POWDER BY FRICTION STIR PROCESSING

E.O. Knyazhev, T.A. Kalashnikova, A.V. Chumaevskii Scientific Supervisor: Dr. E.A. Kolubaev Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences, Russia, Tomsk, Akademicheskii ave., 2/4, 634055

E-mail: clothoid@ispms.ru

Abstract. This paper present a study of the structure of samples made by friction stir processing with addiction of iron powder into aluminum matrix. The formation of the structure at the initial stages of the multi-pass processing is characterized by high heterogeneity with the presence of large iron agglomerates, up to 1-4 mm in size, in the mixing zone. After four passes of the tool along the processing line, a relatively uniform distribution of iron powder in the aluminum matrix was achieved with the presence of agglomerates up to 100 μ m in size.

Введение. Фрикционная перемешивающая обработка (ФПО) широко применяемый способ упрочнения металлических изделий. Данный метод ввиду своей простоты может быть применен к большому спектру металлических материалов. В результате интенсивной пластической деформации, возникающей в ходе обработки, зерна в материале вытягиваются в направлении обработки, измельчаются и рекристаллизуются в зоне перемешивания. За счет эффекта Холла-Петча механические характеристики одних материалов значительно повышаются, для дисперсно-упрочняемых материалов, особенно термоупрочняемых, упрочнение материала может иметь более сложный и неоднозначный характер. Данным методом уже предложено обрабатывать изделия, изготовленные аддитивным методом и имеющие крупные дендритные зерна [1]. Это приводит к увеличению прочностных показателей и гомогенности изделия в целом.

Но, данный метод можно применять не только для локальной обработки изделия с целью измельчения зерна, но и для легирования материалов, используя порошковые смеси металлов и керамик. За счет введения новых компонентов в матрицу материала можно попытаться добиться существенных изменений механических свойств, таких как прочность, твердость и износостойкость. При этом изделие в основном объеме будет иметь свойства основного сплава. Так, например, добавление в алюминиевую матрицу порошка молибдена [2] способствует увеличению микротвердости в 2-4 раза по сравнению с исходным материалом. Масса обработанных таким образом изделий не сильно отличается от исходной,

что делает их привлекательными в областях машиностроения, где важен общий вес конструкции. При этом, организация структуры в материалах, полученных таким способом, может достаточно существенно отличаться. В связи с этим, в данной работе исследуется структура алюминиевого сплава АМг5, модифицированного порошком железа. Выбор железа для получения композита основан на дальнейшем применении материалов, полученных данным методом, для работы в условиях трибосопряжений.

Методика исследования. В исходной пластине АМг5 толщиной 5 мм были подготовлены на фрезерном станке отверстия глубиной 3 мм диаметром 1,5 мм, данные параметры отверстий были выбраны из расчета процентного содержания железа в размере 5%. ФПО была проведена в Институте физики прочности и материаловедения СО РАН на экспериментальном станке для отработки режимов сварки и обработки трением с перемешиванием. Для осуществления равномерного распределения железного порошка были проведены 4 последовательные обработки. Был проведен анализ структуры на микроскопе Altami MET1-C. Изначально была проведена двухмерная компьютерная томография для выявления дефектов и особенностей внутренней структуры материала на установке рентгеновского контроля YXLON Cheetah EVO, не выявившая макродефектов в структуре образцов.

Результаты. Методом оптической металлографии на каждом из четырех образцов была выявлена структура, присущая фрикционной перемешивающей обработке. Размер зерен данным методом выявить не удается из-за особенностей травления данного сплава алюминия, плохо выявляющем зерна, размером порядка 1-5 мкм. Первый проход инструментом показал (рис. 1), что значительная часть порошка железа образовала крупные включения, что говорит о недостаточности одинарной обработки заготовки.

Второй проход инструментом привел к более равномерному распределению порошка железа, но структура образца все еще неоднородна (рис. 2). В верхней левой части зоны перемешивания можно все еще заметить крупные включения железа. После третьего прохода крупные включения размером более 0,5 мм уже не наблюдаются, неоднородная слоистая структура при этом все еще присутствует.

Рис. 2. Образец АМг5 с 5% содержанием порошка железа после 2 (слева) и 3 (справа) проходов Четвертый проход обработки привел к более однородной структуре (рис. 3). Но по всей области перемешивания можно заметить не размешавшиеся до конца включения железа, размером до 100 мкм

(рис. 4). Это связано с достаточно высокой пластичностью алюминиевой матрицы относительно свойств порошка железа и формируемых интерметаллидных фаз, а также относительно низкой температурой процесса обработки.

Рис. 3. Образец АМг5 с 5% содержанием порошка железа после 4 прохода обработки

Рис. 4. Включения порошка железа после обработки

Заключение. Проведенные исследования показывают, что фрикционная перемешивающая обработка может быть применена для модификации структуры алюминиевого сплава АМг5 порошком железа. Металлографические исследования показывают, что распределение порошка по зоне перемешивания происходит неоднородно, что говорит о необходимости проведения нескольких последовательных обработок, до четырех проходов инструментом.

Работа выполнена в рамках государственного задания ИФПМ СО РАН, тема номер FWRW-2021-0012.

СПИСОК ЛИТЕРАТУРЫ

- Gusarova A.V. Modification of the Material Structure Produced by the Electron-Beam Additive Manufacturing by the Subsequent Friction Stir Processing // IOP Conference Series: Materials Science and Engineering. – 2021. – Vol. 1079. – P. 042014.
- Lee I.S. Formation of Al–Mo intermetallic particle-strengthened aluminum alloys by friction stir processing // Intermetallics. – 2013. – Vol. 35. – P. 9-14.

97

УДК 538.9

ВЛИЯНИЕ ТОЛЩИНЫ ПРОВОЛОКИ ИЗ НИКЕЛИДА ТИТАНА НА ЕЕ МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

<u>М.А. Ковалёва</u>, А.В. Ветрова, А.А. Шишелова Научный руководитель: к.ф.-м.н. Г.А. Байгонакова Национальный исследовательский Томский государственный университет, Россия, г. Томск, пр. Ленина, 36, 634050 E-mail: marina.kovalyova.16@gmail.com

EFFECT OF THICKNESS OF TITANIUM NICKELIDE WIRE ON MECHANICAL CHARACTERISTICS

M.A. Kovalyova, A.V. Vetrova, A.A. Shishelova Scientific Supervisor: PhD G.A. Baigonakova Tomsk State University, Russia, Tomsk, Lenin str., 36, 634050 E-mail: marina.kovalyova.16@gmail.com

Abstract. The study considers the deformation behavior of thin TiNi wires $40-90 \ \mu m$ in diameter under uniaxial tension. With an increase in thickness, the value of the ultimate strength, the critical stress of martensitic shear, and the amount of reversible strain increase with an increase in the diameter of the tested wire. The study of fracture surfaces shows the presence of two zones with a flattened granular relief and a pitted relief.

Введение. В настоящее время известным сплавом с памятью формы является TiNi, который широко распространен в промышленности и биомедицине [1, 2]. Особое место среди функциональных устройств, изготовленных из сверхэластичного TiNi сплава, занимают тонкие проволоки толщиной от 100 до 40 мкм. Данные проволоки представляют собой сплав, вытянутый в тонкую нить с помощью определенной технологии прокатки, с двумя стабильными кристаллическими структурами - высокотемпературной аустенитной фазой с кубической симметрией B2 и низкотемпературной мартенситной фазой с моноклинной симметрией B19', обладающая хорошей механической совместимостью, памятью формы, сверхэластичностью, хорошей износостойкостью и коррозионной стойкостью [3]. Медицинские конструкции из тонких TiNi проволок зависят от их механических характеристик и деформационного поведения, что требует детально изучать данные аспекты. Проволоки применяются для изготовления более сложных конструкций, например, металлические сетки для имплантации, поведение которых совершенно отличается от поведения одиночной проволоки. В связи с этим существует необходимость разработки определенных критериев подбора материалов под ту или иную биологическую ткань. Поэтому важно изучить поведение одиночных проволок различной толщины и выявить влияние толщины на их механические характеристики, что и являлось целью данной работы.

Материалы и методы исследования. Для исследования были приготовлены образцы сверхэластичной TiNi проволоки толщиной 90, 60 и 40 мкм. Проволоку получали из слитков 240 мм х 20мм термомеханической обработкой с промежуточными отжигами в 4 этапа: 1. Ручьевой прокат слитка диаметром 20 мм до прутка толщиной 7 мм (20 циклов); 2. Ротационная ковка прутка от толщины 7 мм

до 3,5 мм (7 циклов); 3. Холодное волочение проволоки от 3,5 мм до 500 мкм (25 циклов). 4. Горячее волочение проволоки от 500 мкм до 90–40 мкм (50–70 циклов). Деформационные диаграммы получали методом одноосного растяжения при помощи программноуправляемого электромеханического комплекса для механобиологии. Изображения общего вида поверхности сверхэластичной проволоки TiNi получили на сканирующем электронном микроскопе Tescan MIRA 3 LMU в ЦКП «Аналитический центр геохимии природных систем».

Результаты и обсуждение. Получены деформационные диаграммы сверхэластичных TiNi проволок 40,60 и 90 мкм методом одноосного растяжения до разрыва (Puc.1). Деформационная диаграмма однократного растяжения проволоки до разрыва имеет три линейных участка: участок упругой деформации аустенита B2; участок вязкого течения, связанный с прямым мартенситным превращением; участок линейного упрочнения, связанный с деформацией мартенсита (puc.1).

Рис. 1. Деформационная диаграмма одноосного растяжения проволоки TiNi до разрыва: а)40 мкм, б) 60 мкм, в) 90 мкм

В результате сравнения деформационных кривых проволок разной толщины стало понятно, что с увеличением толщины проволоки некоторые деформационные характеристики, которые представлены в таблице 1, изменяются. Так значение предела прочности, критического напряжения мартенситного сдвига и величина обратимой деформации увеличиваются с увеличением диаметра испытуемой проволоки.

Методами SEM и EDS были изучены поверхности разрушения образцов (Рис.2). На полученных изображениях всех трех проволок отчетливо видно утонение проволоки в месте разрыва. Утонение и формирование шейки происходило за счет пластического сдвига вязкой матрицы TiNi. На всех трех образцах поверхность разрушения состоит из двух зон: с уплощенным зернистым рельефом и ямочным рельефом с частицами на дне чашечек.

Рис. 2. Поверхности разрушения проволоки TiNi: а)40 мкм, б) 60 мкм, в) 90 мкм

Заключение. По результатам сравнения диаграмм растяжения проволок 40, 60 и 90 мкм была составлена таблица основных механических характеристик (Таблица 1).

Таблица 1

Толщина	Напряжение	Предел	Максимальная	Упругая	Пластическая	Мартенситная
проволоки,	мартенситного	прочности,	деформация до	деформация,	деформация,	деформация, %
МКМ	сдвига, MIIa	MIIa	разрушения, %	%	%	
40	350	1300	11,5	1	4,5	6
60	800	1800	13,5	2	5,9	5,5
90	1200	3150	14	1,5	5,4	7,1

Механические характеристики проволок TiNi

Работа поддержана Правительством Российской Федерации (предложение № 2020-220-08-6662 по поддержке научно-исследовательских проектов, реализуемых под руководством ведущих ученых в российских учреждениях и российских вузах).

- Margan N.B. Medical shape memory alloy applications the market and its products. // Materials Science and Engineering: A. – 2004. – Vol. 378, Iss. 1–2, – P.16-23.
- Fu Y.Q., Du H.J., Huang W., Zhang S., Hu M. TiNi-based thin films in MEMS applications: a review // Sensors and Actuators A: Physical. – 2004. – Vol. 112, Iss. 2–3. – P. 395-408.
- Monika Jenko [et al.] A new route to biocompatible Nitinol based on a rapid treatment with H₂/O₂ gaseous plasma // Applied Surface Science. 2019. Vol. 473. P. 976 984.

УДК 53.06

ОБРАБОТКА ВОЛЬФРАМОВОГО КОНЦЕНТРАТА РУДЫ В ПЛАЗМЕ ДУГОВОГО РАЗРЯДА ПОСТОЯННОГО ТОКА

А.И. Кокорина

Научный руководитель: доцент, к.т.н. А.Я. Пак Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>aik48@tpu.ru</u>

PROCESSING OF TUNGSTEN ORE CONCENTRATE IN A DC ARC DISCHARGE PLASMA

A.I. Kokorina

Scientific Supervisor: associate professor, PhD, A. Ya. Pak Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: aik48@tpu.ru

Abstract. In the present study we synthesized powdered tungsten carbide from tungsten ore concentrate in an open-air environment. This is possible due to the self-shielding effect caused by generation of carbon oxide and carbon dioxide gases. The initial material – ore concentrate – were prepared with magnetic separation, drying and milling. Obtained powders were analyzed with X-Ray diffractometry, tungsten carbide was identified in synthesized samples.

Введение. Карбид вольфрама обладает рядом перспективных физических и химических свойств [1]: высокие электро- и теплопроводность, высокая температура плавления (2600-2850 °C), высокие твердость и износостойкость, а также химическое сопротивление коррозии и окислению, химическая инертность к воздействию кислот и щелочей. Карбид вольфрама применяется в сферах обрабатывающей промышленности, бурения горных пород, изготовления режущих инструментов и штампов, а также в качестве катализатора в реакциях получения водорода. Мировое годовое потребление вольфрама - основного ресурса для карбида вольфрама WC- увеличивается с ростом экономики и развитием технологий и составляет около 60 000 т. Соответственно, развитие методов получения карбида вольфрама: карботермическое восстановление [2], генерация плазменных пучков [3], перемалывание в шаровых мельницах [4] и др. Однако существующие методы получения переработки вольфрам содержащей руды несовершенны ввиду многостадийности процесса, значительного количества отходов и низкой энергоэффективности [5]. Одним из перспективных методов обработки вольфрамового концентрата руды является электродуговой [6], который активно развивается в последние годы.

Экспериментальная часть. Была проведена предварительная обработка исходного вольфрамового концентрата руды, включающая ручную магнитную сепарацию, высушивание в атмосферной печи и перемалывание в шаровой мельнице. Затем из обработанного концентрата руды был получен карбид вольфрама в плазме дугового разряда постоянного тока при токе разрядного контура 220 А и времени синтеза 45 с. Исходные материалы – руда и сибунит – закладывались в полый катод,

выполненный в форме тигля. При соприкосновении анода и катода поджигался разряд (Рис. 1). В процессе синтеза наблюдалось интенсивное выделение угарного и углекислого газов, обеспечивающих экранирование реакционного объема от кислорода воздуха. Электрические сигналы, соответствующие току разрядного контура и напряжению на дуговом разряде, подавались на цифровой осциллограф. Была проведена серия экспериментов с различным соотношением исходных реагентов.

Рис. 1. Схема электродугового реактора

Результаты. В результате качественного и количественного рентгенофазового анализа полученных образцов (рентгеновский дифрактометр Shimadzu XRD 7000s, λ =1,5406 Å) было установлено, что продукт синтеза содержит карбиды вольфрама WC и W₂C, графит C и вольфрам W. Данные кристаллические фазы являются основными, дифракционные максимумы прочих кристаллических фаз находятся на уровне следов. Данный фазовый состав типичен для электродугового синтеза в системе с вольфрамом и углеродом: высокие температуры процесса и присутствие углерода обеспечивают карбидообразование, при этом избыток углерода в системе и эрозионные процессы обеспечивают примеси в виде графита. В ходе проведения серии экспериментов было установлено, что наилучшим с точки зрения наибольшего выхода фазы карбида вольфрама WC по данным рентгеновской дифрактометрии оценено соотношение масс вольфрамового рудного концентра и углерода, обеспечивающее доминирование фазы карбида вольфрама в продуктах. (Рис. 2).

Рис. 2. Типичная картина рентгеновской дифракции полученного образца

Заключение. В данной работе была проведена серия экспериментов по получению порошкообразного карбида вольфрама из предварительно обработанного вольфрамового концентрата руды. Основным пунктом новизны работы является получение карбида вольфрама электродуговым методом в открытой воздушной среде, что возможно благодаря эффекту самоэкранирования реакционного объема от кислорода воздуха. Представляемая работа показывает возможность переработки вольфрамового рудного концентрата в порошковый материал.

Работа выполнена с. поддержкой Российского научного фонда, проект № 19-79-00086.

- Konyashin I. History of cemented carbides in the Soviet Union // Int. Journal of Refractory. 2015. V. 49. – P. 9-26.
- Wang K. F. Fabrication of ultrafine and high-purity carbide powders via a carbothermic reductioncarburization process // Journal of Alloy and Compound. – 2019. – V. 784. – P. 362-369.
- 3. Dash T. Tungsten carbide-titanium carbide composite preparation by arc plasma melting and its characterization // Ceramics International. 2019. V. 45, №4. –P. 4771-780.
- 4. Fernique R. M. T. A simple route to produce tungsten carbide powders by high-energy ball milling and annealing // Ceramics International. 2020. V. 40, №2. P. 1736-1742.
- Shen L. Tungsten extractive metallurgy: a review of processes and their challenges for sustainability // Minerals Engineering. – 2019. – V. 142. – P. 105934.
- Kuzmichev E. N. Obtaining functional materials based on tungsten-containing multicomponent mineral raw materials // Plasma, high-frequency, microwave and laser technologies. – 2015. – V 3. – P. 39-44.

УДК: 66.081.6-278

РАЗРАБОТКА УСТАНОВКИ ДЛЯ ИССЛЕДОВАНИЯ ГАЗОПРОНИЦАЕМОСТИ

<u>М. Копцев</u>, А. Дюсамбаев Научный руководитель: доцент, к.ф.-м.н. Е.Б. Кашкаров Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>mok13@tpu.ru</u>

DEVELOPMENT OF AN INSTALLATION FOR THE STUDY OF GAS PERMEABILITY

<u>M. Koptsev</u>, A. Dyusambaev Scientific Supervisor: Assoc. Prof., PhD E.B. Kashkarov Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: mok13@tpu.ru

Abstract. Gas separation membranes are considered a promising technology due to their compactness, energy efficiency, and scalability. One of the promising types of membranes are Pd based membranes with porous Al_2O_3 support. Porous supports are considered as highly permeable substrates for thin hydrogen-permeable membranes in the processes of hydrogen extraction and purification, as well as carbon dioxide capture and storage. Typically, porous membranes undergo surface modification. As a result, it is required to study the individual contributions of the porous substrate and surface to the gas permeability. For this purpose, a special permeability unit chamber was developed based on the Gas Reaction Automated Machine (GRAM).

Введение. Мембраны для разделения газов считаются перспективной технологией благодаря их компактности, энергоэффективности, масштабируемости. Одним из перспективных типов мембран являются металлические водородопроницаемые мембраны на основе Pd, высокоэнтропийных сплавов и др., нанесенные на специальные микропористые поддержки. Пористые поддержки, например, из оксида алюминия, рассматриваются в качестве высокопроницаемых подложек для тонких водородпроницаемых мембран в процессах выделения и очистки водорода, а также улавливания и хранения углекислого газа [1]. В связи с тем, что указанные мембраны представляют собой многослойную систему, при разработке таких материалов требуется исследование, как отдельных элементов мембран, так и мембраны в целом. Таким образом, целью настоящей работы была разработка отечественной системы для диагностики мембранных материалов на базе автоматизированного комплекса Gas Reaction Automated Machine (GRAM).

Материалы и методы. Для исследования газопроницаемости была разработана и изготовлена испытательная камера. Камера представляет собой цилиндрическую конструкцию с поджимным резбовым механизмом для обеспечения газоплотного соединения прилегающего образца к выходному отверстию, через которое регистрируется проходящий поток газа через мембрану. Система оснащена масс-спектрометром для анализа пропускаемых через мембрану газов. Держатель изготовлен таким образом, чтобы обеспечить равномерное прижатие анализируемого образца.

Испытания на проницаемость проводились на автоматической установке управления газовыми процессами GRAM. Схема разработанной системы для проведения эксперимента приведена на рисунке

1. В качестве рабочего газа применялся аргон. Камера вакуумировалась до давления 10⁻³ Па и нагревалась до необходимой температуры, после чего подавался газ. Протекающий через образец газ анализировался масс-спектрометром [2].

Рис. 1. Схема испытательной установки

Основными характеристиками мембраны являются поток газа и проницаемость. Поток представляет собой общий перенос вещества через мембрану и может быть выражен в виде массы или молярной концентрации в единицу времени на единицу площади (1). Проницаемость определяется как поток на единицу разницы давлений между входной и выходной стороной мембраны [3]. Поток газа рассчитывался как разница концентрации газа, прошедшего в единицу времени через площадь образца. Концентрация газа рассчитывалась исходя из кривых уменьшения давления в камере (рис. 2A).

$$\Phi = J \cdot \frac{\Delta P}{d},\tag{1}$$

где: Φ – поток газа (моль · м⁻² · c⁻¹), J – газовая проницаемость (моль · м⁻¹ · c⁻¹ · Pa⁻¹), d – толщина образца (м), ΔP – разница давлений на входе и выходе образца.

Для определения концентрации газа, значения внутреннего объема ёмкости с газом, тракта подачи газа и объема исследовательской камеры были откалиброваны.

Результаты. В рамках данной работы были исследованы пористые образцы, изготовленные с применением аддитивных технологий, на предмет газопроницаемости. Образцы 1,2,3 были изготовлены в одном технологическом процессе в воздушной атмосфере, образец 4 был изготовлен в вакууме.

Поток газа регистрировался по снижению давления со стороны подачи газа, как показано на рисунке 2А. Была рассчитана проницаемость образцов (таблица 1) и построены потоки газа в зависимости от разности давления. Поток газа через мембрану линейно зависит от давления (рисунок 2Б). Это может свидетельствовать о том, что размеры пор сопоставимы или меньше длины свободного пробега газа в мембране. Исходя из модели вязкого течения Пуазейля (2), можно оценить радиусы пор (таблица 1).

$$r = \sqrt{\frac{\vartheta}{\pi} \times \mu \times \Phi \times \frac{d}{\Delta P}},\tag{2}$$

где: *и* – динамическая вязкость газа (Па·с).

Стоит отметить, что данная модель предполагает наличие сквозных цилиндрических пор. Однако, с помощью данной модели можно оценить пористость полученных образцов.

Таблица 1

№	$J, моль \cdot m^{-1} \cdot c^{-1} \cdot Pa^{-1}$	<i>г</i> , нм	$\lambda/(2 \cdot r)$
1	1,2×10 ⁻⁹	33	1,09
2	2,6×10 ⁻⁹	58	0,63
3	4,5×10 ⁻⁹	75	0,48
4	4,6×10 ⁻⁸	244	0.3

Значения проницаемости, радиуса пор и отношения длинны свободного пробега газа к диаметру пор

Для подтверждения правильности выбранной модели была рассчитана длина свободного пробега газа в мембране (3). Если отношение длины свободного пробега частицы в пористом образце к диаметру пор равно или меньше 1, то процесс протекает по модели вязкого течения Пуазейля.

$$\lambda = \frac{1}{\sqrt{2}} \cdot \frac{k \cdot T}{\pi \cdot d_{2}^{2} \cdot P} = 7, 4 \cdot 10^{-8} \, \text{M}, \tag{3}$$

где: *d*_э – эффективный радиус молекулы газа, *k* – постоянная Больцмана.

Рис. 2. Зависимости изменения давления во впускной камере от времени (A) и потока газа от давления (Б)

Заключение. В ходе работы была спроектирована и изготовлена исследовательская камера для исследования проницаемости мембранных материалов. Камера была откалибрована для проведения исследований на газопроницаемость. Были исследованы образцы, изготовленные из Al₂O₃ методом аддитивных технологий. Были определенны потоки газа через образцы, рассчитана газопроницаемость и произведена оценка пористости образцов. Показана возможность использования разработанной камеры для исследования проницаемости материалов на установке GRAM.

Исследование выполнено при финансовой поддержке Государственного задания в рамках научного проекта № FSWW-2021-0017.

- 1. Isobe T. et al. Preparation and gas permeability of the surface-modified porous Al₂O₃ ceramic filter for CO₂ gas separation //Journal of Asian Ceramic Societies. 2013. Vol. 1. № 1. Р. 65-70.
- Wałowski G. Assessment of gas permeability coefficient of porous materials //Journal of Sustainable Mining. - 2017. - Vol. 16. - №. 2. - P. 55-65.
- 3. Nagy E. Basic equations of mass transport through a membrane layer // Elsevier. 2018. P. 457-481.

УДК 669.296:539.16.04:539.382

ВЛИЯНИЕ ВОДОРОДА НА СТРУКТУРНО-ФАЗОВОЕ СОСТОЯНИЕ И МЕХАНИЧЕСКИЕ СВОЙСТВА ЦИРКОНИЕВОГО СПЛАВА ZR-2.5NB

М.А. Кругляков

Научный руководитель: к.т.н. Е.Н. Степанова Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>Kruglyakov97@tpu.ru</u>

INFLUENCE OF HYDROGEN ON THE STRUCTURAL AND PHASE STATE AND MECHANICAL PROPERTIES OF ZIRCONIUM ZR-2.5NB ALLOY

M.A. Kruglyakov

Scientific Supervisor: Ph.D., E.N. Stepanova Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 Email: Kruglyakov97@tpu.ru

Abstract. Hydride-forming alloys of the Zr-Nb-H system are analyzed. In the initial state in the Zr-2.5Nb alloy, particles of the Nb β phase are observed in the bulk and at the grain boundaries. In addition to the main Zr α phase, the Nb β phase appears in the Zr-2.5Nb-0.19H alloy and precipitations of ZrH and ZrH2 hydrides are also observed. The microhardness of the Zr-2.5Nb alloy samples is (130±7) HV, and after hydrogenation this value rises by 1.3 times, up to (166±7) HV. The value of the yield strength for both samples is comparable within the error values. The value of the tensile strength for the hydrogenated sample is 4.3% higher than for the original sample. For a sample with 0.19 wt. % hydrogen, value of deformation to failure is 2.1% less compared to the original sample not containing hydrogen.

Введение. Изучению взаимодействия водорода с металлами посвящено большое количество исследований как материаловедческого, так и фундаментального плана [1]. Основными проблемами конструкционных и функциональных материалов является механизм проникновения водорода в металл и изменение его свойств под действием водорода. Цирконий и его сплавы находят широкое применение во многих отраслях промышленности благодаря своей коррозионной стойкости и механической прочности в широком температурном диапазоне [2]. В данной работе исследовано влияние водорода на структурнофазовое состояние и механические свойства гидридообразующих сплавов системы Zr-Nb-H.

Материал и методы исследования. В качестве исследуемого материала использовались образцы циркониевого сплава Zr-2.5Nb, вырезанные из продольного сечения заготовки в виде стержня диаметром 2 см и высотой 3 см. Подготовка образца к исследованиям производилась путем шлифования при использовании наждачной бумаги с различным размером зерна. Наводороживание до концентрации 0.19 масс. % производилось при использовании оборудования типа Сиверст (далее сплав Zr-2.5Nb-0.19H). Микроструктуру сплава анализировали с помощью растрового электронного микроскопа Philips SEM 515. Рентгеноструктурный анализ (PCA) был произведен с помощью дифрактометра Shimadzu XRD 7000. Испытания на растяжение производилось на растяжной машине ПВ-2013М при комнатной

температуре с начальной скоростью 6,9·10⁻³ с⁻¹. Микротвердость была измерена с помощью микротвердомера КВ 30 S с нагрузкой 0,5 кг при выдержке 30 с.

Результаты и их обсуждение. По результатам сканирующей электронной микроскопии было установлено, что в исходном состоянии в сплаве Zr-2.5Nb частицы фазы Nbβ наблюдаются в объеме и на границах зерен. Объемная доля частиц, определенная методом стандартных сеток в оптических изображениях структуры сплава, составляет 3-4 %. В то же время, по данным рентгенофазового анализа, в исходном состоянии сплав содержит только фазу Zr_α, что обусловлено малой объемной долей вторичной фазы.

Рис. 1 Исходная структура образца циркониевого сплава Zr-2.5Nb

По результатам РСА определено, что насыщение водородом сплава до концентрации водорода 0,19 масс. % не приводит к заметным структурным изменениям. Однако, по данным рентгенофазового анализа, в результате наводороживания изменяется фазовый состав сплава. Помимо основной фазы Zrα в сплаве Zr-2.5Nb-0.19H появляется фаза Nb_β, также наблюдаются выделения гидридов ZrH и ZrH₂.

Измерения микротвердости показали, что наводороживание приводит к значительным изменениям микротвердости. В исходном состоянии микротвердость образцов сплава Zr-2.5Nb составляет (130±7) HV, а после наводороживания эта величина возрастает в 1.3 раза, до (166±7) HV.

По результатам испытаний на одноосное растяжение при комнатной температуре были получены кривые «напряжение – деформация» для образцов из исследуемого циркониевого сплава.

Рис. 2. Кривые деформация-разрушение сплавов Zr-2.5Nb и Zr-2.5Nb-0.19H при комнатной температуре
Анализируя зависимости рис 2 стоит отметить, что для сплавов как до, так и после гидрирования в общем случае характерно наличие трех стадий деформации. Кроме того, можно сделать выводы о том, что стадия упрочнения для наводороженного образца имеет более плавное протекание, а также большую длительность по сравнению с исходным образцом. Однако стадия установившейся деформации у исходного образца имеет большую протяженность. Стадия разупрочнения у обоих образцов имеет схожую форму протекания.

Кроме того, испытания на одноосное растяжение при комнатной температуре показали, что предел текучести, предел прочности и величина деформации до разрушения образца циркониевого сплава Zr-2.5Nb составляют 364 МПа, 411 МПа и 22.8 %, соответственно. Для образца Zr-2.5Nb-0.19H предел текучести, предел прочности и величина деформации до разрушения составили 366 МПа, 460 МПа и 20.7 %, соответственно. На основе сравнительного анализа полученных кривых можно сделать вывод, что величина предела текучести для обоих образцов имеет сопоставимые в пределах погрешности значения, в то время как значение предела прочности для наводороженного образца на 4.3 % больше, чем для исходного. В то же время у образца с 0.19 масс. % водорода величина деформации до разрушения на 2.1% меньше по сравнению с не содержащим водород исходным образцом.

Выводы. В данной работе исследовано влияние водорода на структурно-фазовое состояние и механические свойства гидридообразующих сплавов системы Zr-Nb-H. В исходном состоянии в сплаве Zr-2,5Nb частицы фазы Nb_β наблюдаются в объеме и на границах зерен. Объемная доля частиц вторичных фаз составляет 3–4 %. По данным рентгенофазового анализа в результате наводороживания фазовый состав сплава изменяется. Помимо основной фазы Zr_{α} в сплаве Zr-2,5Nb-0,19H появляется фаза Nb_β, также наблюдаются выделения гидридов ZrH и ZrH₂. Измерения микротвердости показали, что наводороживание приводит к значительным изменениям микротвердости. В исходном состоянии микротвердость образцов сплава Zr-2.5Nb составляет (130±7) HV, а после наводороживания эта величина возрастает в 1.3 раза, до (166±7) HV. Испытания на одноосное растяжение показали, что значение величины предела текучести для обоих образцов имеет сопоставимые в пределах погрешности значения, в то время как значение предела прочности для наводороженного образца на 4,3 % больше, чем для исходного образца. В то же время у образца с 0.19 масс. % водорода величина деформации до разрешения на 2.1% меньше по сравнению с не содержащим водород исходным образцом.

Работа выполнена при финансовой поддержке Государственного задания в рамках научного проекта № FSWW-2021-0017.

- 1. Скрипчук, Г.А. Взаимодействие металлов с водородом Текст: непосредственный // Молодой ученый. 2009. № 3 (3). С. 26-29.
- Mishin I.P., Grabovetskaya G.P., Stepanova E.N., Laptev R.S., Teresov A.D., Hydrogen effect on the defect structure formation in the Zr-1 wt.% Nb alloy under pulsed electron beam irradiation // Rus. Phys. J 2019. Vol. 62. №. 5. P. 854-860

УДК 539.17

ОЦЕНКА ВКЛАДА ПРОДОЛЬНОЙ ПОЛЯРИЗАЦИИ ФОТОНОВ ДЛЯ ЭКСПЕРИМЕНТА «ДЕЙТРОН»

<u>М.Я. Кузин</u>, А.Ю. Логинов

Научный руководитель: д.ф-м.н. В.В. Гаузштейн Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: myk6@tpu.ru

ESTIMATION OF THE CONTRIBUTION OF THE LONGITUDINAL POLARIZATION OF PHOTONS FOR THE "DEUTRON" EXPERIMENT

<u>M.Ya. Kuzin</u>, A.Yu. Loginov Scientific Supervisor: Ph.D V.V. Gauzshtein Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: <u>myk6@tpu.ru</u>

Annotation. In this paper, we have estimated the contribution of longitudinally polarized photons to the reaction of single photoproduction of a π^0 -meson on a deuteron in order to assess the possibility of passing to a theoretical consideration from the reaction of pion electroproduction to the photoproduction reaction. The contribution of photons was estimated using the limitations in the 2002 «DEUTERON» experiment at the VEPP-3 BINP SB RAS.

Введение. Эксперименты по изучению фотореакций на тензорно-поляризованных дейтронах ведутся на в ИЯФ СО РАН уже более 30 лет. Одним из изучаемых каналов реакций в этих экспериментах является реакции фоторождения пионов на дейтронах. В частности, в работе [1] была измерена тензорная асимметрия фоторождения пи-минус мезонов линейно-поляризованными фотонами, в работе [2] измерены компоненты тензорной анализирующей способности фоторождения нейтрального пи-мезона на дейтронах, а в работе [3] измерены компоненты тензорной анализирующей способности фоторождения пи-минус мезона на дейтроне. Постановка этих экспериментов [1-3] не предполагала регистрацию рассеянного электрона и кинематика исследуемых реакций восстанавливалась в предположении рождения одного пи-мезона и полярного угла рассеяния электрона равном 0. Этот подход вполне оправдан, поскольку подавляющая часть событий соответствует такой кинематике. Однако, в отобранной таким методом экспериментальной статистике присутствует доля фотоном с продольной поляризацией. В работах [1-3] была применена грубая оценка таких фотонов, что сказывается на увеличении статистической ошибки.

В представленной работе проведена численная оценка вклада продольной поляризации фотонов в отобранную статистику эксперимента «ДЕЙТРОН» в ИЯФ СО РАН, проведенного в 2002-2003 гг.

Моделирование. Реакцию $ed \to e' \pi^0 np$ в однофотонном приближении можно рассматривать как образование π^0 -мезонов виртуальными фотонами: $\gamma d \to \pi^0 np$. Тогда связь сечений электро- и фоторождения пионов на дейтроне можно записать как:

Россия, Томск, 26-29 апреля 2022 г.

$$\frac{d\sigma_e}{dE_1 dE_2 d\Omega_1 d\Omega_2} = J \frac{N_e}{\omega_{\gamma}} \frac{d\sigma_{\gamma}}{dE_1 d\Omega_1 d\Omega_2},\tag{1}$$

где N_e – спектр виртуальных фотонов, J – кинематический множитель, ω_{γ} – энергия виртуального фотона, $E_{1,2}$ и $\Omega_{1,2}$ – энергия и телесные углы нуклонов. Переход к реакции фоторождения возможен, если вклад в сечение этой реакции от продольных фотонов стремится к нулю.

Кинематика реакции электророждения пиона в приближении однофотонного обмена очень похожа на кинематику реакции фоторождения, если заменить реальный фотон виртуальным с продольной и поперечной поляризацией:

$$\gamma^*(q) + d(p_d) \to \pi(p_\pi) + N_1(p_1) + N_2(p_2), \qquad (2)$$

где переменные означают четырехмерные импульсы участвующих частиц, то есть $q = (q_0, \vec{q})$ четырехмерный импульс виртуального фотона, $p_d = (E_d, \vec{p_d})$ – дейтрона, $p_\pi = (E_\pi, \vec{p_\pi})$ – пиона, $p_i = (E_i, \vec{p_i})$ – нуклонов (i = 1, 2), четырехмерный импульс фотона определен передачей четырехмерного импульса электрона в процессе рассеяния, то есть $q = k_e - k_{e'}$, где $k_e = (E_e, \vec{k_e})$ и $k_{e'} = (E_{e'}, \vec{k_{e'}})$ означают четырехмерные импульсы электрона до и после рассеяния. Кинематика электронов будет рассматриваться в лабораторной системе отсчета, тогда как оценка матрицы реакции будет проводиться в системе центра масс (с.ц.м.) виртуального фотона и дейтрона; то есть все переменные, которые определяют матрицу реакции, относятся к с.ц.м., если не указано иное. В качестве независимых переменных для описания конечного состояния выберем в с.ц.м. импульс пиона $\vec{p_\pi} = (p_\pi, \theta_\pi, \phi_\pi)$ и сферический угол $\Omega_p = (\theta_p, \phi_p)$ относительного импульса пиона в с.ц.м. и сферического угла относительного импульса нуклонов разыгрывались согласно закону нормального распределения.

С помощью метода обратной функции был реализован алгоритм розыгрыша значения угла рассеяния электрона $\theta_{e^{+}}$ на интервале от 0 до 20 ° таким образом, что вероятность выпадения величины угла была обратно пропорциональна квадрату его значения. Также равномерно разыгрывалось значение энергии электрона после рассеяния от 0 до 2000 МэВ – начальной энергии электрона $E_{e^{-}}$ до рассеяния.

Дифференциальное сечение реакции фоторождения пиона определяется выражением

$$\frac{d^{3}\sigma}{dE_{e'}d\Omega_{e'}} = \frac{\alpha_{\text{qed}}}{Q^{4}} \frac{k_{e'}}{k_{e}} \left(\rho_{L} f_{L}^{00} + \rho_{T} f_{T}^{00} \right), \tag{3}$$

где α_{qed} – постоянная тонкой структуры равная 137,04, f_L^{00} и f_T^{00} – компоненты структурной функции, определяемые двойной интерполяцией, для реакции фоторождения π^0 -мезона, $Q^2 = q_{\mu}^2$. Данные для структурных функций были взяты из работы [4].

Вклад продольных фотонов для кинематических условий эксперимента ДЕЙТРОН 2002 г. определялся как среднее арифметическое значение отношения

$$\frac{\rho_L f_L^{00}}{\rho_L f_L^{00} + \rho_T f_T^{00}}.$$
(4)

Россия, Томск, 26-29 апреля 2022 г.

В условиях эксперимента «ДЕЙТРОН» 2002 г. нейтроны детектируются в верхнем плече детектора, протоны – в нижнем. Кинетическая энергия нейтронов регистрируется в пределах от 15 до 150 МэВ, полярный угол – от 50 до 90°, азимутальный угол – 0 ± 30°. Кинетическая энергия протонов регистрируется в пределах от 50 до 200 МэВ, полярный угол – от 50 до 90°, азимутальный угол – 180 ± 30°. Перевод компонентов четырехмерных импульсов нуклонов в лабораторной систему координат производился с помощью преобразований Лоренца. На рисунке 1 представлена общая схема эксперимента «ДЕЙТРОН».

Рис. 1. Общая схема эксперимента

Результаты. Приведённый в данном отчёте алгоритм для вычисления вклада продольных фотонов был реализован на языке программирования C++ для 10⁵ итераций. Численное значение вклада продольно поляризованных фотонов в сечение реакции составило 0.058%. Данным значением вклада можно пренебречь, следовательно, допустимо перейти к теоретическому рассмотрению от реакции электоророждения к реакции фоторождения пиона на дейтроне.

Полученная методика расчета в дальнейшем позволяет оценивать вклад продольно поляризованных фотонов для других фотореакций на дейтроне и для различных кинематических условий.

Работа выполнена при поддержке РНФ № 22-22-00016.

- Gauzshtein V.V. et al. Measurement of a double spin asymmetry in the photoproduction of π−-mesons on deuterons // European Physical Journal A – 2018. – V. 54., № 10. – P. 167.
- 2. Lukonin S.E. et al. Measurement of tensor analyzing power components for the incoherent π 0-meson photoproduction on a deuteron // Nuclear Physics A 2019. V. 986. P. 75
- Gauzshtein V.V. et al. Measurement of tensor analyzing powers of the incoherent pion photoproduction on a deuteron Measurement of tensor analyzing powers of the incoherent pion photoproduction on a deuteron // Nuclear Physics A – 2017. – V. 968. – P. 23
- Tamman M. et al. Incoherent single pion electroproduction on the deuteron with polarization effects // Physical Review C – 2006. – V. 74. – P. 044001

УДК 621.793.79:620.178.1

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЛЕГИРОВАНИЯ ТА И МНОГОСЛОЙНОЙ АРХИТЕКТУРЫ ПОКРЫТИЙ НА ОСНОВЕ СИСТЕМЫ TI-AL-N НА ИХ ДЕФОРМАЦИЮ И РАЗРУШЕНИЕ ПРИ СКРЕТЧ-ТЕСТИРОВАНИИ И ОДНООСНОМ РАСТЯЖЕНИИ

<u>Е.Д. Кузьминов</u>¹, Ю.А. Гаранин²

Научный руководитель: д.ф.-м.н. А. Р. Шугуров^{1,} ¹Институт физики прочности и материаловедения СО РАН, Россия, г. Томск, просп. Академический, 2/4 ²Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: evgenij_kuzminov00@mail.ru

INVESTIGATION OF THE INFLUENCE OF TA ALLOYING AND MULTILAYER ARCHITECTURE OF COATINGS ON THE BASIC TI-AL-N SYSTEMS ON THEIR DEFORMATION AND FRACTURE DURING SCRATCH TESTING AND UNIAXIAL STRETCHING

E. D. Kuzminov¹, Yu.A. Garanin²

Scientific Supervisor: Dr. A.R. Shugurov¹

¹Institute of Strength Physics and Materials Science SB RAS, Russia, Tomsk, Akademichesky av. 2/4 ²Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: evgenij kuzminov00@mail.ru

Abstract. The effect of Ta alloying and the multilayer architecture of coatings based on the Ti-Al-N system on their behavior under uniaxial tension and scratch testing is investigated. It is shown that the alloying with tantalum leads to a considerable decrease in the density of transverse cracks in the coatings. At the same time, the creation of multilayer compositions consisting of alternating ceramic and metal layers contributes to an increase in the crack resistance of the protective coatings under scratch testing due to the suppression of grain growth through the entire thickness of the coating, as well as effective energy dissipation at the interfaces between the layers.

Введение. На сегодняшний день осаждение твердых защитных покрытий является одним из основных способов повышения износостойкости, стойкости к окислению, коррозии и эрозии различных материалов. В частности, широкое применение получили покрытия системы Ti-Al-N. Однако, несмотря на высокую твердость данных покрытий, введение Al в решетку TiN также приводит к снижению их трещиностойкости (вязкости разрушения) [1], а следовательно, и к ухудшению износостойкости. Наиболее перспективными направлениями увеличения трещиностойкости покрытий на основе нитридов переходных металлов являются их легирование дополнительными химическими элементами и создание многослойных композиций с чередующимися слоями различных материалов. В частности, введение тантала в покрытия Ti-Al-N позволяет в широких пределах варьировать электронную конфигурацию атомов, что обусловливает существенное изменение характера химической связи и, тем самым, ключевых свойств покрытий. При создании многослойных композиций перспективными является

Россия, Томск, 26-29 апреля 2022 г.

1

создание системы, состоящей из чередующихся керамических и металлических слоев. Введение металлических слоев позволяет увеличить энергию разрушения подобных покрытий, а также обеспечить дополнительную диссипацию энергии за счёт создания границ раздела между слоями, которые способствуют отклонению трещин [2]. Таким образом, целью данной работы является исследование влияния легирования Та и многослойной архитектуры покрытий на основе системы Ti-Al-N на их деформацию и разрушение при скретч-тестировании и одноосном нагружении.

Экспериментальная часть. Покрытия системы Ti-Al-N наносили методом реактивного магнетронного распыления в среде из смеси газов аргона и азота на подложки из технически чистого титана. Осаждение покрытий проводили с помощью двухмагнетронной распылительной системы с использованием мишеней TiAl (50/50 ат.%) и Та (99,9 ат.%). Толщины покрытий и отдельных слоев приведены в таблице 1.

Таблица 1

Покрытие	Число	Толщина	Общая толщина	Содержание элементов в		
	слоев	слоя, мкм	покрытия, мкм	керамических слоях, ат. %		х, ат. %
				Ti	Al	Та
Ti-Al-N	1	3,0	3,0	44	56	-
Ti-Al-Ta-N	1	3,0	3,0	42	47	11
Ti-Al-Ta-N/TiAl	4/3	0,7/0,1	3,1	42	47	11
Ti-Al-Ta-N/Ta	4/3	0,7/0,1	3,1	42	47	11

Количество слоев, толщина и элементный состав покрытий

Методами рентгеновской дифракции и просвечивающей электронной микроскопии (ПЭМ) были изучены фазовый состав и внутренняя микроструктура покрытий соответственно. Механические характеристики покрытий были исследованы методом наноиндентирования. Исследование трещиностойкости покрытий на основе системы Ti-Al-N проводили методами скретч-тестирования и одноосного растяжения. При скретч-тестировании были определены критические нагрузки L_{c1} и L_{c2}, соответствующие возникновению в покрытиях первых трещин и их полному выкрашиванию соответственно. Параметры L_{c1} и L_{c2} характеризуют трещиностойкость и адгезионную прочность покрытий соответственно. Изучение царапин после скретч-тестирования, а также поверхности образцов после одноосного растяжения производили методами оптической и сканирующей электронной микроскопии (СЭМ).

Результаты. Методом рентгеновской дифракции установлено, что керамические слои во всех исследованных покрытиях имеют ГЦК структуру типа NaCl (B1) без выраженной преимущественной ориентации. Наряду с пиками Ti-Al-Ta-N на дифрактограммах многослойных покрытий Ti-Al-Ta-N/TiAl и Ti-Al-Ta-N/Ta присутствуют рефлексы у-TiAl и Ta соответственно. Исследования поперечного сечения образцов методами СЭМ и ПЭМ показали, что все покрытия характеризуются плотной структурой. Керамические слои во всех исследованных покрытиях имеют столбчатую зеренную структуру. Металлические слои подавляют рост столбчатых зерен через всю толщину покрытий, так что в каждом новом слое Ti-Al-Ta-N происходит зародышеобразование и рост новых зерен.

Методом наноиндентирования показано, что однослойные покрытия Ti-Al-N и Ti-Al-Ta-N характеризуются близкими значениями твердости Н (31,8 и 31,5 ГПа соответственно), тогда как эффективный модуль Юнга E^* покрытия Ti-Al-Ta-N (312 ГПа) на ~5% меньше, чем у Ti-Al-N (328 ГПа). У многослойных покрытий наблюдается снижение твердости на 10-15% по сравнению с покрытием Ti-Al-Ta-N до 27,5 и 28,6 ГПа для Ti-Al-Ta-N/TiAl и Ti-Al-Ta-N/Ta соответственно. В то же время эффективный модуль Юнга многослойных покрытий незначительно уменьшается до 307 и 310 ГПа для Ti-Al-Ta-N/TiAl и Ti-Al-Ta-N/Ta соответственно. Снижение механических характеристик многослойных покрытий обусловлено вкладом более мягких металлических слоев в механический отклик покрытий при наноиндентировании.

Проведенные исследования выявили у всех покрытий трехстадийный характер разрушения при одноосном растяжении. На первой стадии в покрытиях возникли поперечные трещины (при деформациях $\varepsilon_1 = 2,00-2,36$ %), плотность распределения N_t которых быстро росла с увеличением степени деформации. Вторая стадия разрушения ($\varepsilon_{II} = 2,61-3,09$ %) характеризовалась снижением скорости роста плотности распределения поперечных трещин. При деформациях $\varepsilon_{III} = 3,72-4,45$ % наступила третья стадия разрушения покрытий на основе системы Ti-Al-N, на которой в них образовались диагональные трещины. Согласно полученным результатам у всех исследованных покрытий, легированных Та, величина N_t оказалась ниже, чем покрытие Ti-Al-N.

Исследование закономерностей деформации и разрушения покрытий при скретч-тестировании показало, что самой низкой стойкостью к возникновению трещин (L_{c1} = 6,1 H) характеризуется покрытие Ti-Al-N, в то время как наиболее высокая критическая нагрузка L_{c1} = 9,0 H была обнаружена у покрытия Ti-Al-Ta-N. Многослойные композиции продемонстрировали близкие значения L_{c1} , которые оказалась ниже, чем у покрытия Ti-Al-Ta-N. В то же время, самой сильной адгезией обладает многослойное покрытие Ti-Al-Ta-N/TiAl, у которого в отличие от других образцов практически не наблюдалось обнажения подложки вплоть до максимальной приложенной нагрузки 40 H. Самая низкая величина $L_{c2} = 25,7$ H была установлена в случае покрытия Ti-Al-Ta-N/Ta.

Заключение. В результате проведенных исследований установлено, что легирование покрытий Ti-Al-N танталом и создание многослойной архитектуры, состоящей из чередующихся керамических и металлических слоев, приводит к снижению их твердости и модуля упругости. В то же время, испытания на одноосное растяжение продемонстрировали снижение плотности растрескивания всех покрытий легированных Та. Более того, создание многослойных композиций Ti-Al-Ta-N/TiAl и Ti-Al-Ta-N/Ta позволило эффективно подавить формирование столбчатых зерен через всю толщину покрытий, границы которых являются путями для быстрого распространения трещин. В результате, наиболее высокая стойкость к царапанию индентором была выявлена у покрытий Ti-Al-Ta-N/TiAl.

Работа выполнена в рамках государственного задания ИФПМ СО РАН, тема номер FWRW-2021-0010. Исследования выполнены с использованием оборудования ЦКП «Нанотех» ИФПМ СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- Eremeev S.V., Shugurov A.R. Chemical bonding analysis in Ti_{1-x-y}Al_xTa_yN solid solutions // Surf. Coat. Technol. – 2020. – V. 395. – P. 125803.
- Zhang S., Sun D., Fu Y., Du H. Toughening of hard nanostructural thin films: a critical review // Surf. Coat. Technol. – 2005. – V. 198. – P. 2-8.

115

УДК 004.94

РАЗРАБОТКА МОДЕЛЕЙ В CST STUDIO SUITE ДЛЯ МОДЕЛИРОВАНИЯ ПОЛЯРИЗАЦИОННОГО ИЗЛУЧЕНИЯ

<u>М.А. Лаппо</u>, Н.С. Бердников, Д.А. Шкитов Научный руководитель: к.ф.–м.н. М.В. Шевелёв Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E–mail: <u>mal19@tpu.ru</u>

THE MODELS DEVELOPMENT IN CST STUDIO SUITE FOR POLARIZATION RADIATION SIMULATION

<u>M.A. Lappo</u>, N.S. Berdnikov, D.A. Shkitov Scientific Supervisor: PhD M.V. Shevelev Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: mal19@tpu.ru

Abstract. Development of the target models in CST for "twisted" polarization radiation simulation is performed. The spectral range of radiation for TPU microtron conditions is evaluated for developed targets.

Введение. Поляризационное изучение (ПИ) возникает в результате динамической поляризации атомов вещества кулоновским полем заряженной частицы [1]. На практике различные виды ПИ чаще всего используются для диагностики параметров пучков заряженных частиц, и реже, в качестве источника электромагнитного излучения. Недавно было предложено использовать ПИ от сгустка со спиральным распределением частиц для дальнейшей регистрации «закрученного» излучения [2]. Мы же предлагаем использовать спиральную мишень для генерации «закрученного» излучения [3]. Более подробно о «закрученности» – об этой новой степени свободы излучения, можно прочитать в обзоре [4]. Проведение эксперимента планируется на микротроне ТПУ [5]. Целью данной работы является разработка модели спиральных мишеней для проведения моделирования процесса генерации ПИ в CST, и оценить спектральные характеристики излучения для параметров микротрона ТПУ.

Методы исследования. Моделирование является одним из основных инструментов в науке. Для проведения исследований по генерации ПИ электронным пучком на микротроне ТПУ необходимо специализированное программное обеспечение (ПО). Мы остановили свой выбор на CST Studio Suite [6]. Пакет CST это комплекс вычислителей, предназначенный для трёхмерного электромагнитного моделирования объектов разнообразной формы, который ранее уже использовался для моделирования ПИ [7–9]. В процессе проектирования устройств с помощью CST, конструкции в трехмерном представлении создаются с помощью черчения простейших геометрических форм и выполнения логических операций над ними. Данное ПО позволяет провести моделирование взаимодействия заряженных частиц с мишенями различной геометрии и различными свойствами. Для процесса моделирования потребуется ряд вычислителей: метод частиц в ячейках (Particle–in–cell) – необходим для моделирования задач распространения заряженных частиц во временной области; вычислитель

наведенных полей (Wakefield) – предназначен для получения и дальнейшего анализа кильватерных полей; вычислитель трекинга (Particle Tracking) – выполняет моделирование траектории заряженных частиц; вычислитель во временной области (Time domain) – моделирует распространение электромагнитного поля во времени и пространстве.

Результаты. Для проведения моделирования реальных сред нужно учитывать свойства материалов. Предварительно моделируемые мишени будут изготовлены из меди. В библиотеке материалов CST предложен выбор из двух видов меди: отожжённой (annealed) и чистой (pure), которые незначительно отличаются значением электрической удельной проводимости ($5.8 \cdot 10^7 \text{ 1/Om} \cdot \text{m}$ и $5.96 \cdot 10^7 \text{ 1/Om} \cdot \text{m}$, соответственно). Относительная магнитная проницаемость равна 1, остальные параметры у них одинаковы. Оценка толщины скин-слоя для двух видов меди равна ~0.65 мкм для 10 ГГц. Таким образом, подобранная толщина мишеней $\Delta h = 1$ мм заведомо больше толщины скин-слоя. Это требуется при проведении моделирования, учитывающего проникновение электромагнитного поля в металл (тип материала в CST: металл с учётом потерь – lossy metal).

На рис. 1(а) изображена схема эксперимента, с помощью которой планируется зарегистрировать закрученное излучения и определить степень «закрученности». На данном этапе работы были созданы геометрические модели металлических мишеней (см. рис. 2) с заданными свойствами с целью реализации предлагаемой схемы эксперимента и оценка диапазона спектра излучения (см. рис. 1(б)) для энергий электронов микротрона 2,5...5,7 МэВ.

Рис. 1. Схема регистрации излучения (а), оценка диапазона спектра излучения от кольца (б)

Рис. 2. Модели мишеней: кольцо (а), геликоид (б), экран (в), двойная щелевая мишень (г)

Модели мишеней были разработаны с учётом их параметризации: размеров, углов наклона мишени и расположение её относительно траектории пучка. В пакете CST были построены следующие модели мишеней (см. рис. 2): кольцо r = 10 мм, R = 150 мм, $\Delta h = 1$ мм; геликоид с параметрами, как у кольца и шагом спирали T = 150 мм; экран переходного излучения с размерами a = b = 300 мм, $\Delta h = 1$ мм, $\alpha = 45^{\circ}$ (угол наклона к пучку); двойная щелевая мишень дифракционного излучения с размерами a = 300 мм, h = 40 мм (ширина щели), $\Delta h = 1$ мм, $\alpha = 45^{\circ}$, d = 60 мм (сдвиг пластины).

Заключение. Таким образом, создание моделей мишеней и оценка спектрального диапазона излучения позволяет нам перейти далее к моделированию поляризационного излучения. Моделирование планируется выполнить на кластере ТПУ. Работа поддержана в ТПУ в рамках программы развития № Приоритет–2030–НИП/ИЗ–005–0000–2022.

- Karlovets D.V., Potylitsyn A.P. Universal description for different types of polarization radiation // Accelerator Physics. – 2010.
- Bogdanov O.V., Kazinski P.O., Lazarenko G.Y. Proposal for experimental observation of the twisted photons in transition and Vavilov-Cherenkov radiations // Journal of Instrumentation. – 2020. – V. 15., № 04. – P. C04052.
- Дышеков А.А. Моделирование свойств «закрученного» излучения, генерируемого электронами от спиральной мишени // Молодежь и современные информационные технологии : Сборник трудов XVII Междунар. научно–практической конференции студентов, аспирантов и молодых ученых. – Томск, 2020. – С. 35–36.
- 4. Князев Б.А., Сербо В.Г. Пучки фотонов с ненулевой проекцией орбитального момента импульса: новые результаты // УФН. 2018. Т. 188., № 5. С. 508–539.
- Науменко Г.А., Потылицын А.П., Каратаев П.В. и др. Спектр когерентного переходного излучения, генерируемого модулированным электронным пучком // Письма в ЖЭТФ. – 2017. – Т. 15., № 2. – С. 115–118.
- CST Computer Simulation Technology [Электронный ресурс]. Режим доступа: <u>https://www.cst.com</u>. (дата обращения: 13.03.2022)
- Lekomtsev K.V., Aryshev A.S., Karataev P.V. et al. Simulations of transition radiation from a flat target using CST particle studio // Journal of Physics: Conference Series. – 2014. – V. 517. – P. 012016.
- Lekomtsev K.V., Karataev P.V., Tishchenko A.A. et al. CST simulations of THz Smith–Purcell radiation from a lamellar grating with vacuum gaps // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2015. – V. 355. – P. 164–169.
- 9. Galyamin S.N., Tyukhtin A.V., Vorobev V.V. et al. Cherenkov radiation of a charge exiting open–ended waveguide with dielectric filling // Physical Review Accelerators and Beams. 2019. V. 22., № 1. P. 012801.

УДК 669.018.25:539.219:539.25

ВЛИЯНИЕ РЕЖИМОВ ОБРАБОТКИ НА ЗЕРЕННУЮ СТРУКТУРУ ФЕРРИТНО-МАРТЕНСИТНОЙ СТАЛИ ЭП-823

В.В. Линник

Научный руководитель: доцент, д.ф-м.н. И.Ю. Литовченко Национальный исследовательский Томский государственный университет, Россия, г. Томск, пр. Ленина, 36, 634050 E-mail: lera.linnik.1999@mail.ru

INFLUENCE OF PROCESSING MODES ON THE GRAIN STRUCTURE OF FERRITIC-MARTENSITIC STEEL EP-823

V.V. Linnik

Scientific Supervisor: Assistant Professor, Dr., I. Yu. Litovchenko National Research Tomsk State University, Russia, Tomsk, Lenin str., 36, 634050 E-mail: lera.linnik.1999@mail.ru

Abstract. The effect of high-temperature thermomechanical treatment (HTMT) with plastic deformation by rolling in austenitic region on the grain structure of 12% chromium ferritic-martensitic steel EP-823 were studied. The features of the grain structure of steel are studied by optical metallography. It is shown that HTMT leads to the formation of structure with grains flattened in the rolling plane and extended in the rolling direction. The average grain size after HTMT in a plane parallel to the rolling plane is higher than after THT, and in the rolling plane it is smaller than after THT.

ферритно-мартенситные стали с содержанием Жаропрочные Введение. 12% хрома рассматриваются в качестве перспективных конструкционных материалов для ядерных и термоядерных энергетических реакторов нового поколения, так как они обладают высокой коррозионной стойкостью, а также низкой склонностью к радиационному распуханию и высокотемпературному охрупчиванию [1-4]. Для повышения длительной высокотемпературной прочности ферритно-мартенситных сталей применяются различные термические и термомеханические обработки. Обычно ферритно-мартенситные стали используются после традиционной термообработки (ТТО), однако использование термомеханических обработок (ТМО) позволяет значительно повысить прочностные свойства сталей, в том числе и при высоких температурах [1-4].

Исследования влияния различных обработок на микроструктуру и механические свойства 12 %-Сг ферритно-мартенситной стали ЭП-823 были начаты ранее, однако зависимость зеренной структуры этой стали от режимов термомеханических обработок исследовано мало. В работе [4] показано, что высокотемпературная термомеханическая обработка (ВТМО) увеличивает эффективность дисперсионного и субструктурного упрочнения стали ЭП-823 за счет увеличения плотности дислокаций и объемной доли наноразмерных частиц карбонитридной фазы MX (M – V, Nb; X – C, N), тем самым обеспечивая повышение пределов прочности и текучести при температурах 20 и 650 °C, относительное удлинение до разрушения при этом остается на приемлемом уровне.

В настоящей работе проведено сравнительное исследование зеренной структуры стали ЭП-823 после ТТО и ВТМО.

Материалы и методы исследования. В качестве материала для исследования использовалась 12%-ная хромистая ферритно-мартенситная сталь ЭП-823, элементный состав которой представлен в таблице 1. Традиционная термическая обработка заключалась в закалке от температуры 1100 °C с выдержкой 1 час и отпуске при 720 °C 3 часа. ВТМО включала нагрев до 1100 °C с выдержкой 1 час, горячую пластическую деформацию прокаткой до величины $\varepsilon \approx 50\%$ и последующий отпуск при T = 720 °C в течение 1 ч.

Таблица 1

С	Cr	Mn	Мо	Nb	V	W	Ni	Ν	Si	Ce	Ti	В	Al
0,14	11,56	0,58	0,74	0,40	0,34	0,68	0,68	0,03	1,09	0,10	0,01	0,006	0,02

Элементный состав стали ЭП-823 (вес. %, основа Fe)

Образцы для исследований были вырезаны на электроискровом станке в форме двойных лопаток с размерами рабочей части $\approx 13 \times 2 \times 0.8$ мм. Поврежденный слой удалялся механической шлифовкой с последующей механической полировкой. Для металлографических исследований полированная поверхность травилась в растворе 1 г. пикриновой кислоты + 5 мл соляной кислоты + 100 мл спирта. Металлографические исследования проводили с использованием оптического микроскопа Olympus GX71.

Результаты. Результаты исследований структуры стали ЭП-823 методом оптической металлографии представлены на рисунке 1. На протравленных шлифах видны границы бывших аустенитных зерен, внутри которых наблюдаются мартенситные пакеты. Средний размер зерен бывшего аустенита составляет после традиционной термообработки 17,7 мкм, в то время как после высокотемпературной термомеханической обработки в плоскости параллельной плоскости прокатки – 22,2 мкм.

Исследования микроструктуры стали ЭП-823 после ВТМО в поперечном сечении показали наличие зерен, вытянутых в направлении прокатки и значительно сплющенных в плоскости прокатки. Средняя ширина таких зерен составляет 10,4 мкм, длина – 31,8 мкм.

В работе [3] методом растровой электронной микроскопии с использованием дифракции обратно рассеянных электронов показано, что ВТМО приводит к формированию в стали ЭП-823 структуры с вытянутыми в направлении прокатки мартенситными пакетами и увеличению плотности дислокаций в 2–5 раз. В микроструктуре обнаружены грубодисперсные частицы типа МХ (M – V, Nb; X – C, N) и $M_{23}C_6$ (M – Fe, Cr, Mo, W, V), а также мелкодисперсные частицы типа МХ. Анализ статистических данных распределения зерен по размерам показал, что средний размер мартенситных пакетов после ВТМО составляет: 2,1 мкм (в сечении, параллельном плоскости прокатки) и 1,4 мкм (в продольном сечении); после ТТО – 3,1 мкм. Таким образом ВТМО приводит не только к изменению формы и размеров бывших аустенитных зерен, но и уменьшению средних размеров мартенситных пакетов.

Рис. 1. Оптические изображения микроструктуры стали ЭП-823: а) после ТТО; б) после ВТМО параллельно плоскости прокатки; в) после ВТМО в плоскости перпендикулярной к плоскости прокатки

Заключение. Исследованы особенности зеренной структуры ферритно-мартенситной стали ЭП-823 после ВТМО с пластической деформацией в аустенитной области в сравнении с аналогичными особенностями после ТТО. Показано, что ВТМО приводит к формированию структуры с вытянутыми в направлении прокатки и сплющенными в плоскости прокатки зернами. Средние размеры бывших аустенитных зерен после высокотемпературной термомеханической обработки параллельно плоскости прокатки увеличиваются, а перпендикулярно – уменьшаются по сравнению с состоянием после традиционной термообработки. В то же время размеры мартенситных пакетов уменьшаются как в плоскости параллельной плоскости прокатки, так и в перпендикулярно ей.

СПИСОК ЛИТЕРАТУРЫ

- Prakash P. et al. Effect of Thermo-Mechanical Treatment on Tensile Properties of Reduced Activation Ferritic-Martensitic Steel // Materials Science & Engineering A. – 2018. – № 724. – P. 171 – 180.
- Zhou J.H., Shen Y.F., and Jia N. Strengthening a fine-grained low activation martensitic steel by nanosized carbides // Materials Science & Engineering A – 2020. – vol. 769. – P. 138471-1 – 138471-11.
- 3. Litovchenko I. et al. The Microstructure and Mechanical Properties of Ferritic-Martensitic Steel EP-823 after High-Temperature Thermomechanical Treatment // Metals. 2022. V. 12 (79) P. 1 13.
- Almaeva K.V., Polekhina N.A., Linnik V.V., Litovchenko I.Yu. Microstructure and mechanical properties ferritic-martensitic steel EP-823 after high-temperature thermomechanical treatment // AIP Conference Proceedings. – 2019. – V. 2167. – P. 020013-1 – 020013-4.

Россия, Томск, 26-29 апреля 2022 г.

УДК 621.791.722

МИКРОСТРУКТУРА И ФАЗОВЫЙ СОСТАВ ИЗДЕЛИЙ ИЗ ТИТАНОВОГО СПЛАВА ВТ14, ПОЛУЧЕННЫХ ПРОКАТКОЙ И МЕТОДОМ ЭЛЕКТРОННО-ЛУЧЕВОЙ ПРОВОЛОЧНОЙ АЛЛИТИВНОЙ ТЕХНОЛОГИИ

<u>Т.А. Лобова¹</u>, С.А. Мартынов²

Научный руководитель: профессор, д.ф.-м.н. А.В. Панин² ¹Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 ²Институт физики прочности и материаловедения СО РАН, Россия, г. Томск, пр. Академический, 2/4, 634055 E-mail: tal4@tpu.ru

MICROSTRUCTURE AND PHASE COMPOSITION OF VT-14 TITANIUM ALLOY PARTS PRODUCED BY ROLLING AND WIRE-FEED ELECTRON BEAM ADDITIVE MANUFACTURING

<u>T.A. Lobova¹</u>, S.A. Martynov²

Scientific Supervisor: Prof., Dr. A.V. Panin²

¹Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050

²Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences,

Russia, Tomsk, pr. Akademicheskii, 2/4, 634055

E-mail: tal4@tpu.ru

Abstract. The microstructure and phase composition of titanium alloy VT14 parts produced by rolling and wire-feed electron beam additive manufacturing are compared using optical, scanning and transmission electron microscopy, backscattered electron diffraction, and X-ray diffraction analysis. The content of alloying elements in the α and β phases of titanium alloys was studied by EDX analysis. The results showed that samples of 3D-printed titanium alloy VT14 are characterized by larger prior β grains, smaller sizes of α phase plates, a lower volume fraction of residual β phase, and higher microhardness.

Введение. В настоящее время наблюдается большой интерес к проведению фундаментальных, поисковых и прикладных исследований в области аддитивного производства металлических деталей и элементов конструкций [1-3]. Аддитивные производственные технологии позволяют сократить длительность производственного цикла и создавать элементы конструкций сложной формы при одновременном снижении себестоимости продукции. Целью работы является сравнительный анализ микроструктуры и фазового состава прокатанных и 3D-напечатанных образцов титанового сплава BT14, который широко применяется в авиастроении в качестве изделий сложной пространственной конфигурации, деталей двигателя, в машиностроении для изготовления тормозных дисков и шаровых баллонов для ракет.

Экспериментальная часть. Образцы титанового сплава ВТ14, находящегося в прокатанном состоянии, представляли собой прямоугольные пластины с размерами 10 мм × 10 мм × 2 мм, вырезанные методом электроискровой резки из прутка диаметром 40 мм. Химический состав сплава ВТ14,

измеренный с помощью портативного спектрометра X-met 8000: Ti – 89,31 %. Al – 5,73 %, V – 1,61 %, Mo – 3,23 %, Fe – 0,037 %, Zr – 0,007 %.

3D-напечатанные заготовки BT14 с размерами 25 мм × 25 мм × 70 мм были получены методом проволочной электронно-лучевой аддитивной технологии (англ. Electron Beam Additive Manufacturing, сокр. EBAM). Плавление проволоки BT14 осуществлялось в вакууме 1,3×10⁻³ Па электронной пушкой с плазменным катодом при ускоряющем напряжении 30 кВ. Ток пучка варьировался в диапазоне 21 – 24 мА. Подача проволоки осуществлялась со скоростью 2 м/мин под углом 35° к поверхности подложки. Стратегия 3D-печати образцов заключалась в перемещении опорной плиты относительно электронного луча по меандровой траектории с зеркально наплавленными слоями со скоростью 4 мм/с.

Микроструктуру прокатанных образцов ВТ14 и полученных методом электронно-лучевой проволочной аддитивной технологии, изучали с помощью оптического микроскопа Zeiss Axiovert 40 MAT, сканирующего электронного микроскопа Apreo 8 (ЦКП Нанотех ИФПМ СО РАН), а также методом дифракции обратно рассеянных электронов (EBSD) с использованием приставки Oxford Instruments Nordlys. Для металлографических исследований шлифованная и полированная поверхность титановых образцов подвергалась предварительному травлению в реагенте Кролла (2% HF, 2% HNO₃, и 96% H₂O). Исследование элементного состава образцов проводили методом микрорентгеноспектрального анализа с использованием спектрометра INCA X-Act. Рентгеноструктурный анализ 3D-напечатанных заготовок BT14 проводили на дифрактометре Shimadzu XRD-6000 (ЦКП НОИЦ НМНТ ТПУ, поддержанный проектом Минобрнауки России № 075-15-2021-710).

Результаты. Микроструктура прокатанного образца из сплава ВТ14 состоит из первичных неравноосных β зерен (рис. 1,а). Средние продольные и поперечные размеры первичных β зерен составляют 180 и 120 мкм. Внутри первичных β зерен наблюдаются пластины α фазы, средние поперечные размеры которых не превышают 2 мкм (рис. 2,а). Между пластинами α фазы наблюдается остаточная β фаза, имеющая пластинчатую или глобулярную морфологию. Размеры зерен остаточной β фазы варьируются в пределах от 0,5 до 2 мкм (рис. 2,а). Согласно данным микроэнергодисперсионного анализа, содержание ванадия и молибдена внутри прослоек β фазы не превышает 5,3 и 18,9 вес.%.

Рис. 1. Оптические изображения микроструктуры прокатанного (a) и 3D-напечатанного образца BT14 (б,в). Изображения получены в продольной (б) и поперечной плоскостях (в) относительно направления 3D печати

Микроструктура 3D-напечатанных образцов BT14 состоит из столбчатых первичных β зерен, ориентированных вдоль направления роста изделия (рис. 1, б,в). Средний поперечный размер столбчатых

первичных β зерен составляет 1 мм. Внутри первичных β зерен располагаются разориентированные пластины α -Ti (рис. 2, б). Поперечный размер пластин α фазы варьируются в пределах от 0,3 до 1,5 мкм. По границам пластин α фазы выделяются мелкие глобулярные зерна остаточной β фазы со средним размером 0,8 мкм. Согласно результатам рентгеноструктурного анализа, объемная доля β фазы в прокатанных и 3D-напечатанных образцах составляет 12,2 и 10,5 % соответственно.

Рис. 2. EBSD-карты распределения фаз α-Ті (красный цвет) и β-Ті (синий цвет) в прокатанном (a) и 3D-напечатанном образцах BT14 (б)

Меньший поперечный размер пластин α фазы обусловливает более высокое значение микротвердости 3D-напечатанного образца ВТ14 (3900 МПа) по сравнению с прокатным образцом (3600 МПа).

Заключение. В результате проведенных исследований подобраны оптимальные режимы получения беспористых заготовок из титанового сплава ВТ14 методом электронно-лучевой проволочной аддитивной технологии. Показано, что в отличие от прокатанных образцов ВТ14, состоящих из первичных неравноосных β зерен с продольными и поперечными размерами 180 и 120 мкм соответственно, в 3D-напечатанных образцах ВТ14 формируются столбчатые первичные β зерна, поперечные размеры которых достигают 1 мм. Внутри первичных β зерен наблюдаются пластины α фазы, причем в 3D-напечатанных образцах поперечные размеры пластин в 2 раза меньше, чем в прокатанных образцах. Кроме того, 3D-напечатанные образцы характеризуются меньшей объемной долей и размерами остаточной β фазы. Значения микротвердости прокатного и 3D-напечатанного образцов ВТ14 составляют 3600 и 3900 МПа соответственно.

Работа выполнена при финансовой поддержке Российского научного фонда (грант 21-19-00795).

- Herzog D., Seyda V., Wycisk E., Emmelmann C. Additive Manufacturing of Metals// Acta Mater. 2016. V. 117. – P. 371–392.
- 2. Sames W.J., List F.A., Pannala S., Dehoff R.R., Babu S.S. The metallurgy and processing science of metal additive manufacturing // Int. Mater. Rev. 2016. V. 61. P. 315–360.
- Lee J. Y., An J., Chua C. K. Fundamentals and applications of 3D printing for novel materials // Applied Materials Today. – 2017. – V. 7. – P.120–133.

УДК 538.975

CHARACTERISTICS OF THE ANNIHILATION OF POSITRONS IN NANOSIZED METAL COATINGS ZR/NB AFTER HE⁺ ION IRRADIATION

A.D. Lomygin¹, D.G. Krotkevich¹, M.O. Liedke²

Scientific Supervisor: R.S. Laptev¹

¹Tomsk Polytechnic University, Russia, Tomsk, Lenin Ave., 30, 634050

²Helmholtz Center Dresden-Rossendorf, Germany, Dresden, 400 Bautzner road, 01328

E-mail: lomyginanton141@gmail.com

ОСОБЕННОСТИ АННИГИЛЯЦИИ ПОЗИТРОНОВ В НАНОРАЗМЕРНЫХ МЕТАЛЛИЧЕСКИХ СЛОЯХ ZR/NB ПОСЛЕ ОБЛУЧЕНИЯ ИОНАМИ НЕ⁺

<u>А.Д. Ломыгин</u>¹, Д.Г. Кроткевич¹, М.О. Лидке²

Научный руководитель: Р.С. Лаптев¹

¹Национальный исследовательский Томский политехнический университет

Россия, г. Томск, пр. Ленина, 30, 634050

² Центр им. Гельмгольца Дрезден-Россендорф,

Германия, Дрезден, ш. Баутцнер, 400, 01328

E-mail: lomyginanton141@gmail.com

Аннотация. Новые технологии получения конструкционных материалов, устойчивых к водородным и радиационным повреждениям, являются актуальными проблемами материаловедения. Водородное повреждение и радиационная деградация являются важными факторами, ограничивающими усталостную долговечность конструкционных материалов. Одной из перспективных альтернатив при разработке радиационно-водородостойких материалов с улучшенными физико-механическими свойствами является нанесение наноразмерных металлических покрытий (НМП). Настоящая работа посвящена изучению аннигиляции позитронов в НМП Zr/Nb с различной толщиной отдельных слоев Zr и Nb после облучения ионами He^+ с дозами от $3 \square 10^{16}$ ионов/см² до $3 \square 10^{17}$ ионов/см².

Introduction. Nanoscale multilayer coatings (NMCs) are increasingly used in power engineering, electronics, mechanical engineering, optics, biotechnology, and other industries. The reason for this is the possibility of a significant change in the physical and mechanical properties and corrosion resistance of structural materials. Changes in the thickness and composition of layers can lead to an increase in strength, hardness, and the formation of a nanocomposite with a wide range of functional purposes. The hexagonal-cubic systems (hcp/bcc and hcp/fcc) have the greatest structural mismatch of crystal lattices. In addition, hcp/bcc systems have the potential to create radiation-resistant composites. The large divergence allows incoherent and semi-coherent boundaries of hcp/bcc systems to be an effective absorber of radiation defects and a barrier to dislocation propagation during deformation, as shown in recent studies [1, 2].

The aim of this work was a comparative analysis of the characteristics of positron annihilation in a Zr/Nb NMCs with a thickness of individual layers of 100 ± 10 nm after irradiation with He⁺ ions.

Research methods. The samples were analyzed by means of annihilation line Doppler broadening (DB) spectrometry using variable positron energy at the AIDA - Helmholtz Center Dresden-Rossendorf, HZDR. A monoenergetic positron beam 4 mm in diameter was used; the positron energy varied from 0.01 keV to 35 keV. Annihilation γ radiation was recorded by the HPGe detector with an energy resolution of 1.09 + 0.01 keV, interpolated for an energy of 511 keV. The obtained DB spectra were analyzed by estimating the parameters S and W of the annihilation line, as well as graphical representation of the R parameter as a function of S = f(W). The prepared samples were irradiated with He⁺ ions using a PION-1M plasma ion source with a non-incandescent cathode. The energy of the accelerated ions was 25 keV. The irradiation time was chosen to cover a wide dose range from 3*10¹⁶ to 3*10¹⁷ ions/cm². During irradiation, the temperature of the samples did not exceed 200 °C.

Results. Figure 1 shows the dependence of the S, W parameter on the positron energy for Zr/Nb NMCs with an average layer thickness of 100 ± 10 nm and an irradiation dose range from $3*10^{16}$ to $3*10^{17}$ ions/cm².

Fig. 1. Dependence of the S parameter (a) and the W parameter (b) on the positron energy of the Zr/Nb NMCs with the thickness of individual layers of 100 ± 10 nm and the range of irradiation doses from $3*10^{16}$ to $3*10^{17}$ ions/cm²

Analyzing the obtained curves in Figure 1, we can conclude that the S parameter of the Zr/Nb NMCs decreases with increasing radiation dose, which indicates the absence of the formation of stable radiation defects. After 20 keV, the S parameter increases and the W parameter decreases, which indicates the predominant positron annihilation in the single-crystal silicon substrate. Figure 2 shows the dependence of the S parameter on the W parameter of a Zr/Nb NMCs with a thickness of individual layers of 100 ± 10 nm and a range of irradiation doses from $3*10^{16}$ to $3*10^{17}$ ions/cm².

Fig. 2. Plot of the dependence of the S parameter on the W parameter for Zr/Nb NMCs with an individual layer thickness of 100 ± 10 nm and an irradiation dose range from $3*10^{16}$ to $3*10^{17}$ ions/cm²

As can be seen from Figure 2, the graph of the dependence S = f(W) consists of 2 curves with different slope angles, this is due to the annihilation of positrons in the substrate, annihilating positrons in the substrate change the slope of the curve.

Conclusion. A layer-by-layer analysis of positron annihilation in Zr/Nb NMCs shows that increasing the irradiation dose by He^+ ions leads to the formation of stable radiation defects. Once the energy reaches 20 keV, the probability of positron annihilation in the monocrystalline silicon substrate increases.

The research was supported by a grant from the Russian Science Foundation (project no. 20-79-10343).

REFERENCES

- Laptev R., Lomygin A., Krotkevich D., Syrtanov M., Kashkarov E., Bordulev Y., Siemek K., Kobet, A. Effect of Proton Irradiation on the Defect Evolution of Zr/Nb Nanoscale Multilayers // Metals. – 2020. – V. 10, No 4. – P. 535.
- Laptev R., Svyatkin L., Krotkevich D., Stepanova E., Pushilina N., Lomygin A., Ognev S., Siemek K., Uglov V. First-Principles Calculations and Experimental Study of H⁺-Irradiated Zr/Nb Nanoscale Multilayer System // Metals. – 2021. – V. 11, No 4. – P. 627.

УДК 538.9

PERMEABILITY OF THE POROUS TITANIUM NICKELIDE BASED ALLOYS WITH TITANIUM ADDITIONS PRODUCED BY THE DIFFUSION SINTERING METHOD

<u>O. Mamazakirov</u>, S.G. Anikeev, N.V. Artyukhova Scientific Supervisor: PhD S.G. Anikeev Tomsk State University, Russia, Tomsk, Lenin str., 36, 634050 E-mail: <u>oubek55@gmail.com</u>

ПРОНИЦАЕМОСТЬ ПОРИСТЫХ СПЛАВОВ НА ОСНОВЕ НИКЕЛИДА ТИТАНА С ДОБАВКАМИ ТИТАНА, ПОЛУЧЕННЫХ МЕТОДОМ ДИФФУЗИОННОГО СПЕКАНИЯ

О. Мамазакиров, С.Г. Аникеев, Н.В. Артюхова

Научный руководитель: к. ф-м. н. С.Г. Аникеев Национальный исследовательский Томский государственный университет,

Россия, г. Томск, пр. Ленина, 36, 634050

E-mail: oubek55@gmail.com

Аннотация. Выполнено исследование структурных особенностей пористых сплавов на основе никелида титана с различной концентрацией добавки Ті, полученных методом диффузионного спекания. Определены параметры макроструктуры порового пространства сплавов TiNi-Ti – коэффициенты пористости и проницаемости, средний размер пор и межпоровых перемычек. Увеличение концентрации добавок Ti ведет к уменьшению средних размеров пор и увеличению средних размеров межпоровых перемычек. Исследованы коэффициенты проницаемости пористых материалов, полученных методами диффузионного спекания и CBC. Установлено, что коэффициенты проницаемости образцов, полученных разными методами, существенно отличались несмотря на схожие коэффициенты пористости. Это может быть объяснено тем, что экспериментальные образцы, полученные разными методами, имеют отличающуюся структуру поровых каналов: CBC-материал имеет регулярную взаимосвязанную пористую структуру, а спеченный материал – менее взаимосвязанные поры в продольном направлении, что в совокупности с малым размером пор затрудняет течение жидкости в материале.

Introduction. At present, titanium nickelide based alloys, including porous ones, are the most prominent representatives of the class of shape memory materials. They have high physical, mechanical and electrochemical properties, biochemical and biomechanical compatibility with tissues of the body and are widely used in various fields of medicine [1]. The structural features of porous titanium nickelide determine its functional, physical and mechanical properties [2, 3].

In the perspective of using TiNi-based porous alloys as a material for creating implantable structures, the parameters of the interaction of the porous framework with biological body fluids are of particular importance. In this regard, permeability is the most important physical characteristic of a porous material [4]. Permeability characterizes the interaction of a porous material and the liquid impregnating it. Description of the behavior of a

porous medium impregnated with a liquid is one of the most difficult physical problems. This work is devoted to the study of the permeability of a porous TiNi–Ti alloy obtained by diffusion sintering.

Research methods. Diffusion sintering is performed using TiNi powders, the particles of which have a spongy, flattened morphology. The sintering process is accompanied by minimization of the free surface energy and chemical potential of the TiNi powder system. During liquid-phase diffusion sintering, by wetting the surface of powder particles with a melt, interparticle contacts are formed. In turn, this leads to the convergence of the centers of powder particles and compaction of the powder system due to the high surface energy of the melt, which leads to a decrease in porosity.

The macrostructure and permeability of a porous TiNi-Ti based alloy obtained by diffusion sintering have been studied. Porous TiNi based alloys with additions of Ti (2.5–7.5 at. %) were used in the form of cylindrical specimens 70–80 mm long and 11–12 mm in diameter with various pore sizes. The structure of porous titanium nickelide with titanium additives, obtained by diffusion sintering, is a three-dimensional pore space, the morphological structure of which is typical for highly porous materials obtained with the presence of a liquid phase.

Results. Pore size distribution histograms for TiNi based alloys with the addition of Ti (2.5–7.5 at. %), which have a single-modal form, are constructed. With an increase in the titanium additive concentration, the average pore size decreases (Table 1). This occurs due to the increasing volume of the melt based on $(Ti_2Ni+TiNi)$, which contributes to formation of closed pores due to the convergence of the centers of powder particles, coalescence and healing of pores. At the same time, the porosity and permeability coefficients do not differ significantly, which makes it difficult to interpret the results obtained for porous alloys obtained by sintering. This problem can be solved by analyzing the effect of structural features on the permeability coefficient of SHS materials based on titanium nickelide, since the formed pore space of SHS materials is characterized by a high proportion of open and interconnected pores.

Table 1

TiNi alloy	P, %	Open porosity (P _o), %	Closed porosity (P ₃), %	$d_{nop}, \mu m$	$\sigma_{nop}, \mu m$	K, $\cdot 10^{-9} \text{ m}^2$
TiNi-2,5Ti	61.5	21.4	40.1	113.9	66	0.044 ± 0.001
TiNi-5Ti	62.4	19.3	43.1	60.9	71.4	0.025 ± 0.002
TiNi-7,5Ti	58.8	16.9	41.9	55.9	77.7	0.044 ± 0.002
SHS-TiNi	65	53	12	150	170	0.189 ± 0.002

Macrostructural parameters of the modified TiNi-based alloy

To show the influence of the parameters of the pore space macrostructure on the permeability, finely porous SHS samples were additionally studied, which had a similar porosity coefficient with sintered materials. These samples had a permeability coefficient an order of magnitude higher: $0.189 \cdot 10^{-9} \text{ m}^2$ (Table 1). The SHS material obtained in the layer-by-layer combustion regime has a regular interconnected porous structure. During diffusion sintering of powders consisting of oblate particles, the sintered sample is compacted in the transverse direction and a pore space structure is formed with less interconnected pores in the longitudinal direction, which, together with the small pore size, makes it difficult for the liquid to flow in the material.

The porosity of TiNi samples with Ti additives was studied by weighing. To study open and closed porosity, the method of measuring the volume of displaced liquid was used. It has been established that the proportion of open and dead-end pores of the studied samples lies in the range of 16.9–21.4% and 40.1–43.1 %

falls on closed pores. Therefore, despite the high porosity, the permeability coefficient of these samples is an order of magnitude lower than that of SHS materials (Table 1).

Conclusion. It was shown that the distribution of pores in TiNi based alloys with titanium additives (2.5–7.5 at. %) is unimodal and lies in a narrow size range. With an increase in the titanium addition, the average pore sizes decrease. However, the samples had almost equal coefficients of porosity and permeability. To compare the throughput, the structural features of finely porous SHS materials based on titanium nickelide with an average pore size of 150 μ m were studied. The finely porous SHS samples had a significantly different permeability coefficient due to the interconnected regular structure of the pore space. In addition, open and closed porosity were determined. Most of the pores in the sample were closed, which is also the reason for the lower permeability of sintered TiNi-Ti-based alloys compared with SHS materials.

The study was supported by a grant from the Russian Science Foundation (project no. 19-79-10045).

REFERENCES

- Lanshakov V.A., Gunther V.E., Plotkin G L. [et al.] Medical materials and shape memory implants. Shape memory implants in traumatology and orthopedics / Edit. V. E. Günther. – Tomsk: MIC Publishing, 2010. – Vol. 2 – 282 p.
- Günter, V. E., Khodorenko, V.N., Chekalkin, T.L. [et al.] Medical materials and shape memory implants. Shape memory medical materials / Edit. V. E. Günther. – Tomsk: MIC Publishing, 2011. – Vol. 1 – 534 p.
- Bansiddhi, A., Sargeant, T.D., Stupp, S.I. Porous NiTi for bone implants: a review // Acta Biomater. 2008.
 Vol. 4, No. 4. P. 773–782.
- Anikeev, S.G., Kaftarova, M.I., Khodorenko, V.N. Influence of titanium additives on the structural features of porous materials based on titanium nickelide produced by diffusion sintering // Inorganic materials. – 2020. – Vol. 56, No. 9. – P. 968–974.

УДК 538.9

ВЛИЯНИЯ ТИПА РЕАКТОРА НА СТРУКТУРНЫЕ ОСОБЕННОСТИ НИКЕЛИДА ТИТАНА, ПОЛУЧЕННОГО МЕТОДОМ СВС В АТМОСФЕРЕ АРГОНА

<u>О. Мамазакиров,</u> А.С. Гарин, В.В. Титова Научный руководитель: к. ф-м. н. Е.С. Марченко Национальный исследовательский Томский государственный университет, Россия, г. Томск, пр. Ленина, 36, 634050 E-mail: <u>oubek55@gmail.com</u>

THE EFFECT OF THE REACTOR TYPE ON THE STRUCTURAL FEATURES OF TITANIUM NICKELIDE PRODUCED BY THE SHS METHOD IN ARGON ATMOSPHERE

<u>O. Mamazakirov</u>, A.S. Garin, V.V. Titova Scientific Supervisor: PhD E.S. Marchenko Tomsk State University, Russia, Tomsk, Lenin str., 36, 634050 E-mail: oubek55@gmail.com

Abstract. A study of the structural features of porous titanium nickelide based alloys obtained by the SHS method in the open and closed reactors in an argon atmosphere has been carried out. It was found that the sample obtained in a closed reactor had a larger average pore size than the sample synthesized in an open reactor. The reasons for that are explained by the fact that in a closed reactor the inert gas enters the reactor, heats up, receiving heat from the heater and mixing with the hot reaction gases. All heat is stored in the reactor and causes coalescence of small pores combining them into larger ones. And during synthesis in an open reactor, the gas transfers heat from the heater to the charge and removes heat from the sample. Moreover, the phase composition and parameters of the macrostructure of the pore space of TiNi alloys (porosity coefficients, average size of pores and interpore bridges) were determined.

Введение. Пористые сплавы на основе TiNi, полученные методом самораспространяющегося высокотемпературного синтеза (CBC), используются в качестве материалов медицинского назначения уже более 30 лет за счет хорошей биохимической и биомеханической совместимости, подтвержденной экспериментами и клинической практикой. Они нашли применение благодаря своим хорошим функциональным свойствам, пористо-проницаемой структуре, а также простоте и высокой производительности метода получения. Пористые сплавы на основе никелида титана, полученные методом CBC, значительно отличаются структурой и свойствами от сплавов, получаемых другими методами порошковой металлургии [1 – 3]. Настоящее исследование посвящено изучению влияния типа реактора на структурные особенности пористого никелида титана, полученного CBC в атмосфере аргона.

Материалы и методы. Методом СВС из порошков титана марки ПТОМ и порошков никеля ПНК–1Л5 был получен пористый сплав в закрытом и открытом реакторах. Порошки просушивали в лабораторном вакуумном шкафу при температуре 60 – 70 °C в течение 4 – 8 ч. Время приготовления смеси в V-образном смесителе составляет 8 ч. Порошковую шихту засыпали в кварцевые трубки

диаметром 40 мм и уплотняли в течение 30 мин. Далее кварцевую трубку с шихтой устанавливали в реактор и подвергали нагреву при температуре 465 – 480 °C в трубчатой электрической печи типа СУОЛ в атмосфере инертного газа Ar в течение 20 мин. Высокотемпературный синтез инициировали путем короткого замыкания электрической цепи на открытой стороне кварцевой трубки. Вслед за прохождением волны горения реактор с полученным сплавом охлаждали в воде.

Макро- и микроструктуру образцов пористого сплава TiNi исследовали методами оптической и растровой электронной микроскопии с использованием микроскопов Axiovert-40 MAT, Quanta 200 3D и Tescan Vega 3 с системой энергодисперсионного микроанализа Oxford Instruments.

Выполнено количественное описание поровой структуры. Начальную пористость насыпки и пористость полученных образцов определяли методом взвешивания по формуле:

$$\Pi = \left(1 - \frac{\rho_{\text{пор}}}{\rho_{\text{мон}}}\right) \times 100\%,$$

где ρ_{nop} – плотность пористого образца или порошковой заготовки, ρ_{MOH} – плотность монолитного никелида титана (6,45 г/см³).

Средний размер пор и межпоровых перемычек образцов TiNi определен методом случайных секущих с использованием программы ImageJ. Гистограммы распределения пор и межпоровых перемычек по размерам построены на основе множественных значений размеров пор и межпоровых перемычек.

Результаты. Выполнено исследование структурных особенностей полученных пористых сплавов на основе никелида титана, полученных методом CBC в закрытом и открытом реакторе. Определены фазовый состав и параметры макроструктуры порового пространства полученных образцов – коэффициент пористости, средний размер пор и межпоровых перемычек, построено распределение пор и межпоровых перемычек по размерам. Химический состав матричной фазы соответствует эквиатомному составу TiNi, в то время как состав поверхностных включений – сложный. ЭДС анализом установлено, что в них входят: Al, Ca, K, Cl, Si. Очевидно, что эти выделения являются шлаковыми образованиями, которые обычно всплывают на поверхность расплава и представляют собой сплав нерастворимых алюмосиликатов и растворимых хлоридов.

Рис. 1. Макроструктура пористого TiNi, полученного методом CBC в закрытом (а) и открытом (б) реакторах в среде аргона

Коэффициент пористости для образцов, полученных в закрытом и открытом реакторах, составил 65,8 % и 60,8 %, соответственно. Распределение пор и межпоровых перемычек по размерам для сплавов TiNi, полученных в закрытом и открытом реакторе в среде аргона, имеет одномодальный вид. Образец, полученный в закрытом реакторе, имел средний размер пор в 179,2 \pm 159,5 мкм и средний размер межпоровых перемычек в 124,4 \pm 92,4 мкм (табл. 1). А образец, полученный в отрытом реакторе, характеризовались меньшими средними размерами пор и межпоровых перемычек, чем у тех, что были получены в закрытом реакторе (137,1 и 114,7 мкм, соответственно).

Таблица 1

133

Параметры макроструктуры порового пространства пористого TiNi, полученного методом CBC

СВС материал, полученный в	$d_{{}_{\!\!M\!e\! \! \! \! \!$	d_{nop} , мкм	П, %
Закрытом реакторе	$124,4 \pm 92,4$	$179,2 \pm 159,5$	65,8
Открытом реакторе	$114,7 \pm 84,1$	$137,1 \pm 124,6$	60,8

Заключение. Таким образом, проведено исследование структурных особенностей пористых титановых сплавов на основе титана, полученных методом CBC в открытом и закрытом реакторах в атмосфере аргона. Установлено, что образец, полученный в закрытом реакторе, имел больший средний размер пор, чем образец, синтезированный в открытом реакторе. Предполагается, что это может быть объяснено тем, что в случае закрытого реактора инертный газ поступает в реактор и нагревается, получая тепло от нагревателя и смешиваясь с горячими реакционными газами. Все тепло сохраняется в реакторе и вызывает коалесценцию мелких пор, объединяя их в более крупные. А при синтезе в открытом реакторе газ переносит тепло от нагревателя к шихте и выводит тепло из образца. Кроме того, определены фазовый состав и параметры макроструктуры поре пространства сплавов TiNi (коэффициенты пористости, среднего размера пор и межпоровых перемычек).

Исследование поддержано Правительством Российской Федерации (предложение № 2020-220-08-6662 по поддержке научно-исследовательских проектов, реализуемых под руководством ведущих ученых в российских учреждениях и российских вузах).

- 1. Медицинские материалы и имплантаты с памятью формы. Имплантаты с памятью формы в травматологии и ортопедии / Под ред. В. Э. Гюнтера. Томск: Изд-во МИЦ, 2010. Т. 2 282 с.
- 2. Гюнтер В. Э., Ходоренко В. Н., Ясенчук Ю. Ф., и др. Никелид титана. Медицинский материал нового поколения. Томск: Изд-во МИЦ, 2006. 296 с.
- Bansiddhi A., Sargeant T. D., Stupp S. I. Porous NiTi for bone implants: a review // Acta Biomater 2008.
 Vol. 4. No. 4. P. 773 782.

УДК 666.3 - 127

ПОЛУЧЕНИЕ ГРАДИЕНТНЫХ ПОРИСТЫХ МАТЕРИАЛОВ НА ОСНОВЕ МАХ-ФАЗ ИЗ ПРЕКЕРАМИЧЕСКИХ БУМАГ

Ю.Р. Мингазова

Научный руководитель: заведующий лабораторией ЛПМОБВЭ ИЯТШ, Е.Б. Кашкаров Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>yula.mingazova@mail.ru</u>

PREPARATION OF GRADIENT COMPOSITES FROM PRECERAMIC PAPERS BASED ON MAX-PHASES

Y.R. Mingazova

Scientific Supervisor: Head of Laboratory LPMOBVE SNSE, E.B. Kashkarov Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: yula.mingazova@mail.ru

Abstract. This article is devoted to fabrication of novel preceramic paper-derived functionally graded composites (FGM) based on Ti_3SiC_2 MAX-phase. Functional materials with a porosity gradient were fabrication by spark plasma sintering of stacked preceramic papers at 1050 °C for 5 min. Phase composition, microstructure and hardness were analyzed by X-ray diffraction, scanning electron microscopy and the Vickers method, respectively.

Введение. МАХ-фазы представляют собой семейство тройных слоистых соединений, соответствующих условной формуле: $M_{n+1}AX_n$ (n=1,2,3...), где M – переходный металл d-группы; A – металл p-группы; X – углерод или азот. Данные соединения обладают уникальным сочетанием свойств, характерных как для металлов, так и для керамики: низкая плотность; высокая тепло- и электропроводность; высокая прочность; коррозионная стойкость в агрессивных средах; хорошая механическая обрабатываемость; высокая температура плавления и химическая стабильность при температурах выше 1000 °C [1].

Для повышения физико-механических свойств и функционализации материалов на основе MAXфаз могут создаваться функционально-градиентные материалы (ФГМ) на их основе [2]. ФГМ являются мультифункциональными материалами, в которых путем варьирования состава и/или микроструктуры достигаются необходимые свойства. Для получения ФГМ применяются различные методы, такие как порошковая металлургия, методы центробежного/ленточного литья, ламинирование, искровое плазменное спекание и т.д.

В настоящей работе для формирования ФГМ на основе MAX-фаз Ti₃SiC₂ предлагается новый подход, основанный на формировании ламинатов из прекерамических бумаг разного состава с последующим искровым плазменным спеканием. Применение прекерамических бумаг позволяет регулировать состав каждого слоя, легко задавать форму листов и обеспечивать равномерную укладку слоев материала [3]. На сегодняшний день в литературе наблюдается лишь несколько работ по получению

ФГМ на основе МАХ-фаз, одним из направлений исследования которых является синтез композитов с градиентом пористости. ФГМ с градиентом пористости могут быть изготовлены для широкого спектра применений в качестве различного рода катализаторов, теплообменников, фильтрующих элементов и т.д. Таким образом целью данной работы является исследование возможности получения ФГМ с пористой структурой на основе МАХ-фазы Ti₃SiC₂ из прекерамических бумаг.

Материалы и методы исследования. Для создания ФГМ использовалась прекерамическая бумага с порошковым наполнителем на основе MAX-фазы Ti₃SiC₂. Прекерамические листы изготавливались с помощью бумагодельной машины D7 (Sumet Systems GmbH, Денклинген, Германия). Использовалось 2 схемы, в первой схеме концентрация порошкового наполнителя во внешних слоях составляла 70%, во внутреннем – 90% (Образец: 70-90-60). Во второй схеме внешние слои содержали 90% порошкового наполнителя, а внутренний – 70% (Образец: 90-70-90). Общее количество слоев в «стеке» составило 24, т.е. концентрация порошкового наполнителя изменялась через 8 слоев.

Синтез подготовленных стеков бумаг производился методом искрового плазменного спекания на установке Advanced Technology SPS 10-4. Спекание проходило в среде вакуума при температуре 1050 °C и давлении 10 МПа в течение 5 минут.

Анализ фазового состава образцов осуществлялся методом рентгеноструктурного анализа (PCA) на дифрактометре Shimadzu XRD 7000S. Исследование микроструктуры боковой поверхности и поперечного шлифа проводилось с помощью сканирующего электронного микроскопа Vega 3. Твердость спеченных образцов определялась методом Виккерса на микротвердомере KB 30S при нагрузке 9,8 H.

Результаты и обсуждение. На рисунке 1 представлены результаты РСА боковых граней спеченных композитных материалов. Верхняя дифрактограмма получена для образца 90-70-90, боковая грань которого содержит 90% порошкового наполнителя на основе Ti₃SiC₂. Нижняя дифрактограмма – результаты измерения боковой грани образца 70-90-70 с содержанием порошкового наполнителя 70%. Анализ дифракционных данных выявил закономерность изменения содержания фаз в зависимости от доли органического наполнителя в прекерамической бумаге. Согласно чему, обнаружено, что в данных образцах помимо MAX-фазы Ti₃SiC₂, присутствуют фазы карбида и силицида титана (TiC и Ti₅Si₃ соответственно). Причем, при сравнении интенсивности соответствующих рефлексов на двух представленных дифрактограммах, видно, что содержание карбидной фазы снижается вдвое при увеличении концентрации порошкового наполнителя, что обеспечивает большую долю MAX-фазы в слоях композита, полученных из прекерамической бумаги с 90 масс.% наполнителя.

Рис. 1. Дифрактограммы боковых граней ФГМ на основе МАХ-фазы: 90% – боковая грань образца 90-70-90 с содержанием порошкового наполнителя 90%; 70% – боковая грань образца 70-90-70 с содержанием порошкового наполнителя 70%

Исследование поперечного шлифа образцов с различной архитектурой укладки (рис.2) показало заметную разницу в микроструктуре материала в зависимости от концентрации порошкового наполнителя в прекерамической бумаге. Изменение доли порошкового наполнителя в исходном сырье ведет к изменению пористости материала, тем самым способствуя получению требуемого градиента. Также стоит заметить значительное различие в усадке центральной части композита в зависимости от концентрации порошкового наполнителя. Так учитывая исходную толщину листов бумаги, усадка для композитов с концентрацией порошкового наполнителя 70 масс.% составляет 75%, а для слоев с концентрацией порошкового наполнителя 90 масс. % – 65%.

Рис. 2. СЭМ-изображения поперечного шлифа градиентного композита на основе Ti₃SiC₂, где красным цветом заполнены поры: а) 90-70-90; б) 70-90-70

Механические свойства исследуемых образцов оценивались на основании измерения твердости методом Виккерса, индентирование производилось вдоль поперечного шлифа с шагом в 150 мкм. Для образца 70-90-70 при переходе от внешнего слоя с меньшим содержанием МАХ-фазы к внутреннему слою значение твердости увеличилось от 6,4 до 7,7 ГПа. Для образца 90-70-90 при переходе от внутреннего слоя к внешнему значение твердости изменилось от 5,4 до 9,3 ГПа. Наблюдаемые изменения обусловлены в основном различием пористости, однако также необходимо учитывать влияние более твердой фазы карбида титана в пористых слоях композита.

Заключение. В рамках исследования продемонтрирована возможность получения функциональных градиентных материалов из прекерамических бумаг на основе MAX-фазы Ti₃SiC₂ методом искрового плазменного спекания. На основании результатов PCA установлено, что повышение массовой доли порошкового наполнителя в прекерамической бумаге приводит к увеличению содержания Ti₃SiC₂ и снижению карбидной фазы. Результаты СЭМ поперечного шлифа исследуемых образцов наглядным образом продемонстрировали полученный градиент пористости.

Исследование выполнено при финансовой поддержке Министерства науки и высшего образования, проект № FSWW-2021-0017.

- Barsoum M. W. The MN+ 1AXN phases: A new class of solids: Thermodynamically stable nanolaminates // Progress in solid state chemistry. - 2000. - V. 28. - №. 1-4. - P. 201-281.
- Kashkarov E. B. et al. Functionally graded laminated composites fabricated from MAX-phase filled preceramic papers: Microstructure, mechanical properties and oxidation resistance // Journal of the European Ceramic Society. – 2022.
- Zhu X., Schoenitz M., Dreizin E. L. Oxidation of aluminum particles in mixed CO2/H2O atmospheres // The Journal of Physical Chemistry C. – 2010. – V. 114. – №. 44. – P. 18925-18930.

УДК 620.186

ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ ПОЛИМЕТАЛЛОВ ВТ6/СU С РАЗЛИЧНЫМ СОДЕРЖАНИЕМ МЕДИ, ИЗГОТОВЛЕННЫХ ЭЛЕКТРОННО-ЛУЧЕВОЙ ПРОВОЛОЧНОЙ АДДИТИВНОЙ ТЕХНОЛОГИЕЙ

<u>А.В. Николаева</u>, А.В. Чумаевский, А. В. Воронцов Научный руководитель: к.ф.-м.н. А.П. Зыкова Институт физики прочности и материаловедения СО РАН, Россия, г. Томск, пр. Академический 2/4, 634055 E-mail: nikolaeva@ispms.ru

REGULARITIES OF FORMATION OF Ti-6AI-4V/CU POLYMETALS WITH DIFFERENT COPPER CONTENT MANUFACTURED BY ELECTRON-BEAM WIRE ADDITIVE TECHNOLOGY

<u>A.V. Nikolaeva</u>, A.V. Chumaevskii, A.V. Vorontsov Scientific Supervisor: Assistant Professor, Ph.D. A.P. Zykova Institute for Physics of Strength and Material Science of Siberian Branch of Russian Academy of Sciences, Russia, Tomsk, 2/4 Akademicheskii ave., 634055 E-mail: nikolaeva@ispms.ru

Abstract. In this work, we have shown the possibility of obtaining polymetals Ti-6Al-4V/2.6%Cu and Ti-6Al-4V/7.5%Cu by the method of electron beam additive manufacturing (EBAM) with simultaneous feeding of two wires. The effect of the volume fraction of Cu on the evolution of the microstructure and mechanical properties of the obtained polymetals was studied. Alloying a titanium alloy with copper with a volume content of 2.6% does not lead to a transition from primary columnar β -grains to equiaxed ones, but contributes to a decrease in their length and width compared to Ti-6Al-4V manufacturing by EBAM. The tensile strength of the Ti-6Al-4V/2.6%Cu polymetal increased slightly by 5% compared to the initial Ti-6Al-4V alloy. Simultaneous feeding of Ti and Cu wires during the production of Ti-6Al-4V/7.5%Cu polymetal by the EBAM method promotes the transition from large columnar grains to finer equiaxed grains and an increase in the tensile strength by about 25% compared to the initial Ti-6Al-4V.

Введение. Сплавы титана нашли широкое применение в авиационной и космической промышленности, медицинских имплантатах и т. д. благодаря их превосходной удельной прочности, удовлетворительной жаростойкости и коррозионной стойкости. Электронно-лучевое аддитивное производство (ЭЛАП) считается одним из наиболее перспективных методов изготовления изделий из титановых сплавов благодаря сочетанию высокого вакуума и эффективности осаждения проволочного филамента. Однако микроструктура титановых сплавов ВТ6, изготовленных аддитивными технологиями, характеризуется большими столбчатыми β-зернами ~11 мм в длину и ~4,5 мм в ширину [1, 2], эпитаксиальный рост которых связан с высокими скоростями охлаждения во время печати. Следовательно, в аддитивных титановых сплавах наблюдаются анизотропия и снижение механических свойств [3]. Медь является

стабилизирующим элементом β-фазы титана, т. о. добавление данного элемента во время печати позволит увеличить объемное измельчение зерна и осуществить переход от столбчатой зеренной структуры к равноосной. Целью данной работы является исследование влияния Cu на эволюцию микроструктуры и механические свойства полиметаллических образцов с различным содержанием меди, полученных методом нестационарной локальной металлургии при электронно-лучевой проволочной аддитивной технологии.

Экспериментальная часть. Для исследований формирования структуры при ЭЛАП полиметаллов ВТ6/2,6%Си и ВТ6/7,5%Си использовалась схема подачи двух проволок в единую ванну расплава, которая формируется электронным лучом. Были использованы проволоки из титанового сплава ВТ6 диаметром 1,6 мм и из медного сплава М1 диаметром 1 мм. На первом этапе печати на подложку из технически чистого титана ВТ1-0 было нанесено два слоя ВТ6, затем одновременно 2 слоя ВТ6 и Си и т.д. Таким образом были получены заготовки размером 120×30×8 мм³.

Результаты. Макро- и микроструктуру полученных композитов BT6/2,6%Cu и BT6/7,5%Cu исследовали методами оптической микроскопии и просвечивающей электронной микроскопии. По данным OM в композите BT6/2,6%Cu образуются преимущественно столбчатые зерна длиной до 7 мм и шириной до 960 мкм, а в композите BT6/7,5%Cu формируются преимущественно равноосные зерна размером от 100–500 мкм, что существенно меньше по сравнению со средним размером зерен аддитивного BT6 без добавления меди. Микроструктура композитов состоит из α/β -колоний преимущественно в виде корзиночного плетения внутри первичных зерен β -фазы (рис. 1). По данным ПЭМ в β -областях композитов BT6/2,6%Cu и BT6/7,5%Cu выделяются частицы Ti₂Cu (рис. 1 б, в). Обогащение сплава BT6 медью во процессе ЭЛАП приводит к пересыщенному твердому раствору β -Ti(Cu), который при охлаждении претерпевает эвтектоидное превращение β -Ti + Ti₂Cu.

Рис. 1. Микроструктура и светлопольные ПЭМ-изображения средней части полиметаллов (a) титанового сплава ВТ6 и (б) композита ВТ6/2,6об.%Си (в) композита ВТ6/7,5об.%Си, полученных ЭЛАП с одновременной подачей двух проволок

Испытания полиметаллических образцов ВТ6/Си на одноосное растяжение проводили при комнатной температуре со скоростью 1 мм/мин, были вырезаны плоские образцы размерами 12×2,7×1,5 мм вдоль направления печати в форме собачьей кости. Результаты испытаний на одноосное растяжение композита ВТ6/2,6%Си показали незначительное увеличение предела прочности полиметалла (~948 МПа) на 4 МПа, по сравнению с исходным сплавом ВТ6 (~904 МПа). Пластичность композита ВТ6/2,6%Си снизилась в 1,3 раз по сравнению с исходным сплавом ВТ6

(рис. 2). Предел прочности на разрыв композита BT6/7,5%Си повысился примерно на 25% по сравнению со сплавом BT6, полученным тем же способом, но без добавления меди. Однако с увеличением прочности пластичность снизилась в 2,7 раза по сравнению со сплавом BT6 без добавления Cu (рис. 2).

Рис. 2. Диаграмма напряжение-деформация для полиметаллов ВТ6/2,6%Си, ВТ6/7,5%Си и сплава ВТ6, полученных методом ЭЛАП

Заключение. Таким образом, легирование титанового сплава медью с объемным содержанием 2,6% не приводит к переходу от первичных столбчатых β-зерен к равноосным, но способствует уменьшению их длины и ширины по сравнению с ВТ6, изготовленным ЭЛАП. При получении композита ВТ6/7,5%Си методом ЭЛАП с одновременной подачей двух проволок происходит столбчатый рост зерен меньшего размера по сравнению с аддитивным ВТ6 без меди и формирование преимущественно равноосных зерен размером 100–500 мкм. Предел прочности сплава ВТ6 без добавления меди составил 904 МПа, в то время как легирование материала 7,5 об.% позволило повысить данную величину до 1126 МПа. Предел прочности полиметаллов увеличился с увеличением концентрации меди из-за эффекта твердого раствора и дисперсионного упрочнения.

Работа выполнена в рамках государственного задания ИФПМ СО РАН, тема номер FWRW-2021-0012.

- Zhang D. et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys // Nature. 2019. – Vol. 576, No. 7785. – P. 91-95.
- Bermingham M. J. et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing // Acta Materialia. – 2019. – Vol. 168, – P. 261–274.
- 3. Tan X. et al. Graded rostructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting // Acta Materialia. 2015. Vol. 97, P. 1–16.

УДК 539.2

ФАЗОВЫЙ СОСТАВ ЖАРОПРОЧНОГО СПЛАВА ПОСЛЕ ПОЛЗУЧЕСТИ ПРИ ИЗМЕНЕНИИ ХИМИЧЕСКОГО СОСТАВА

<u>А.В. Никоненко</u>¹, Н.А. Попова², Е.Л. Никоненко² Научный руководитель: доцент, к.ф.-м.н. Е.Л. Никоненко² ¹Томский государственный университет систем управления и радиоэлектроники Россия, Томск, пр. Ленина, 40, 634050, ²Томский государственный архитектурно-строительный университет Россия, Томск, пл. Соляная, 2, 634003 E-mail: vilatomsk@mail.ru

THE PHASE COMPOSITION OF A REFRACTORY ALLOY AFTER CREEP DURING CHANGES IN THE CHEMICAL COMPOSITION

<u>A.V. Nikonenko¹</u>, N.A. Popova², E.L. Nikonenko²

Scientific Supervisor: Assistant Professor, Ph.D. E.L. Nikonenko

¹Tomsk State University of Control Systems and Radioelectronics, Russia, Tomsk, Lenin str., 40, 634050,

²Tomsk State University of Architecture and Building, Russia, Tomsk, Soljanaja str. 2, 634003

E-mail: vilatomsk@mail.ru

Abstract. The phase composition and structure of Ni-Al-Co-based alloys in two states were studied by transmission diffraction and scanning electron microscopy methods: 1) the initial state - after directional crystallization (DC); 2) DC+ creep 100 h, 900 0C, 10 kg/mm2. The chemical composition of the alloys differed only in molybdenum and titanium content. Alloy No1 with molybdenum content of 1 weight % and titanium 2 weight %, and alloy No2 with molybdenum content of 2 weight % and titanium 1 weight % -. The content of other elements was the same: Ni - 53.4 wt.%, Co - 30 wt.%, Al - 9.5 wt.%, Cr and Nb 2 wt.% each.

Studies have shown a set of phases, the qualitative and quantitative composition of which depends on the heat treatment. The phases observed in the superalloy can be classified as primary and secondary. The main phases are γ' - and γ -phases. Where γ' -phase is a multicomponent intermetallide phase with $L1_2$ superstructure and γ -phase is a HCC solid solution with near-order in atom arrangement. The β - and ε - phases detected in the alloys are secondary. The β -phase is ordered and has a B2 superstructure. ε - phase has a hexagonal densely packed crystal lattice with an ordered arrangement of atoms with DO_{24} superstructure. Both phases are located inside large particles of the γ' -phase.

Studies have shown that different molybdenum and titanium contents, as well as creep, do not affect the phase composition, but lead to its quantitative change.

Введение. Создание суперсплавов, вызванное необходимостью применения более термостойких материалов, потребовало исследования структуры и свойств твердых растворов, упорядоченных фаз и интерметаллидов, построения многочисленных диаграмм равновесия, решения задач высокотемпературной прочности, увеличения сопротивления ползучести, низкотемпературной хрупкости и многочисленных других проблем. В настоящее время суперсплавы широко используются в

различных отраслях техники для формирования материалов, из которых делаются ответственные детали различного рода двигателей. Достигаются эти свойства формированием стабильной оптимальной структуры, созданной с помощью легирования, а также термической обработкой [1-3]. Примером являются суперсплавы на основе Ni, представляющие собой смесь γ'- и γ-фаз

Экспериментальная часть. Методами просвечивающей дифракционной и растровой электронной микроскопии проведены исследования фазового состава и структуры сплавов на основе Ni-Al-Co в двух состояниях: 1) исходном состоянии – после направленной кристаллизации (HK); 2) HK+ ползучесть 100 ч, 900°C, 10 кг/мм². Химический состав сплавов различался только содержанием молибдена и титана. Сплав №1 с содержанием молибдена 1 вес.% и титана 2 вес.%, а сплав №2 с содержанием молибдена 2 вес.% и титана 1 вес.% –. Содержание остальных элементов было одинаково: Ni – 53.4 вес.%, Co – 30 вес.%, Al – 9.5 вес.%, Cr и Nb по 2 вес.%

Исследования методами просвечивающей дифракционной электронной микроскопии (ПЭМ) и растровой электронной микроскопии (РЭМ) показывают набор фаз, качественный и количественный состав которых зависит от термической обработки (таблица 1).

Таблица 1

	доля фазы, δ±0,05					
№ образца	γ'	γ	β	3		
№ 1 HK	0,78	0,15	0,05	0,02		
№2 НК	0,61	0,25	0,09	0,05		
№1 НК + ползучесть 100 часов, 900 ⁰ С, 10 кГ/мм ²	0,79	0,05	0,15	0,01		
№2 НК + ползучесть 100 часов, 900 ⁰ С, 10 кГ/мм ²	0,84	0,08	0,03	0,05		

Фазовый состав исследуемых сплавов

Фазы, наблюдаемые в суперсплаве, можно классифицировать по исходному состоянию как основные и вторичные. Эта классификация основана на объемной доле фаз, их роли в сплаве и постоянном или единичном присутствии. Как мы видим из таблицы 1, основными фазами являются γ' - и γ -фазы. Они образуют основную структуру сплава практически во всех суперсплавах. В исследуемом сплаве они присутствуют в виде квазикубоидов γ' -фазы, разделенных прослойками γ -фазы [1-3]. Где γ' -фазы - многокомпонентная интерметаллидная фаза со сверхструктурой L1₂ и γ -фаза - ГЦК твердый раствор с ближним порядком в расположении атомов. Выполненные в работе измерения позволили классифицировать частицы γ' -фазы на два масштабных уровня: γ' -фаза – γ' -фаза второго уровня (γ'_1) – крупные округлые частицы с размером 25-35 мкм; второй масштабный уровень γ' -фазы – γ' -фаза второго уровня (γ'_{11}) – частицы квазикубоидной формы размером от 0,25 до 0,6 мкм, находящиеся в двухфазной смеси $\gamma + \gamma'_{II}$, которая окружает крупные частицы γ'_1 [1-3].

Обнаруженные в сплавах β - и ϵ - фазы являются вторичными. β - фаза упорядочена и имеет сверхструктуру В2. ϵ - фаза имеет гексагональную плотноупакованную кристаллическую решетку с упорядоченным расположением атомов со сверхструктурой DO₂₄. Присутствие β - фазы и ϵ - фазы обнаруживается только при исследовании методом ПЭМ, и обе фазы располагаются внутри крупных частиц γ '-фазы [1-3]. β -фаза имеет игольчатую форму, а ϵ -фаза имеет пластинчатый вид.

Образцы сплавов после (НК) были подвергнуты 100 часовой ползучести при температуре 900°С и нагрузке 10 кг/мм². Ползучесть не меняет фазовый состав в обоих сплавах, но изменяет объемные доли обнаруженных фаз: в сплаве №1 доля γ'-фазы и ε - фазы практически не меняется, но объемная доля γ - фазы уменьшилась в три раза, в то время как, объемная доля β - фазы увеличилась в такое количество раз (см. табл. 1).

Процесс ползучести на сплав № 2 влияет по-иному: наблюдается значительное увеличение объемной доли γ'-фазы (см. табл. 1), а объемная доли γ - фазы и β - фазы уменьшилась в три раза, причем доля ε -фазы остается неизменной.

Несомненно, в процессе ползучести имеет место фазовая перекристаллизация, которая является одним из механизмов ползучести. Основным же механизмом ползучести для обоих сплавов является дислокационная ползучесть, в которую активно включается γ' – фаза. Плотность дислокаций в цельных частицах γ' – фазы в образце № 1 после испытания на ползучесть - 3,1·10¹⁰ см⁻², в образце № 2 - 2,7·10¹⁰ см⁻². Это высокое значение плотности дислокаций свидетельствует, с одной стороны, о значительной степени деформации в γ' – фазе и, с другой стороны, о большом сопротивлении ползучести этой фазы. Дислокационная структура, как показали исследования, в γ' – фазе - ячеисто-сетчатая. Этот факт подтверждает выше сказанное. В двухфазной смеси $\gamma + \gamma'$ дислокации присутствуют в обеих фазах. Здесь скалярная плотность дислокаций выше – 7,3·10¹⁰ см⁻². Это значение соответствует как сплаву №1, так и сплаву №2. Более высокое значение скалярной плотности дислокаций в двухфазной смеси указывает на большее сопротивления в двухфазной смеси является межфазная граница γ'/γ . Установлено, что скалярная плотность дислокаций повышается вблизи межфазных границ. Можно констатировать, что длительная ползучесть при 900 ⁰С исследуемых сплавов реализуется путем дислокационного скольжения, главным образом, в γ' – фазе.

Заключение. Исследования показали, что различное содержание молибдена и титана, как и ползучесть, не влияет на фазовый состав, но приводит к его количественному изменению.

Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации (тема № FEMN-2020-0004).

- Козлов Э.В., Смирнов А.Н., Никоненко Е.Л., Попова Н.А., Конева Н.А. Морфология фаз и фазовые превращения при термической обработке суперсплавов на основе Ni-Al-Cr и Ni-Al-Co. Масштабные и концентрационные эффекты. - М.: Инновационное машиностроение, 2016. – 175 с.
- Колобов Ю.Р.; Каблов Е.Н.; Козлов Э.В. и др. Структура и свойства интерметаллидных материалов с нанофазным упрочнением. - М.: Издательский Дом МИСиС, 2008. – 328 с.
- Koneva N.A., Nikonenko E.L., Nikonenko A.V., Popova N.A. Microstructural changes in Ni-Al-Cr-based heat-resistant alloy with Re addition // Crystals. - 2021. – V. 11. - P. 89 (1-13).

УДК 539.22/23

ЗАВИСИМОСТЬ РАЗМЕРА ЗЕРНА ОТ ТЕМПЕРАТУРЫ ОТЖИГА СПЛАВА ВТІ-0 ПОСЛЕ АВС-ПРЕССОВАНИЯ

<u>А.В. Никоненко¹</u>, Н.А. Попова², Е.Л. Никоненко² Научный руководитель: доцент, д.ф.-м.н. И.А. Курзина³ ¹Томский государственный университет систем управления и радиоэлектроники Россия, г. Томск, пр. Ленина, 40, 634050 ²Томский государственный архитектурно-строительный университет Россия, г. Томск, пл. Соляная, 2, 634003 ³Национальный исследовательский Томский государственный университет Россия, г. Томск, пр. Ленина, 36, 634050 E-mail: aliska-nik@mail.ru

GRAIN SIZE DEPENDENCE ON ANNEALING TEMPERATURE OF VT1-0 ALLOY AFTER ABC-PRESSING

A.V. Nikonenko¹, N.A. Popova², E.L. Nikonenko² Scientific Supervisor: Assoc. Prof., PhD I.A. Kurzina³ ¹Tomsk State University of Control Systems and Radioelectronics, Russia, Tomsk, Lenin str., 36, 634050 ²Tomsk State University of Architecture and Building, Russia, Tomsk, Solyanaya str. 2, 634003 ³Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: aliska-nik@mail.ru

Abstract. The fine structure of BT1-0 alloy after abc-pressing in different structural states (submicrocrystalline, ultrafine-grained and fine-grained) obtained by annealing at temperatures of 300 °C - 500 °C for 1 hour was studied by the method of transmission electron microscopy on thin foils.

Введение. Применение титана, как конструкционного материала, обусловлено благоприятным сочетанием его высокой механической прочности, коррозионной стойкости, жаропрочности и малой плотности. К существенному повышению прочностных характеристик в титановых сплавах способствует измельчение зерна. В настоящее время большое внимание уделено сплаву ВТ1-0 при крупном размере зерна, в то время как мелкий размер зерна практически не изучен. Поэтому особый интерес представляет титан в наноструктурном и мелкозернистом состояниях.

Целью данной работы является влияние температуры отжига на размер зерна сплава BT1-0 после abc-прессования.

Материалы и методы исследования. Объектом исследования являлись образцы титана марки BT1-0, полученные методом abc-прессования и подвергнутые дополнительному отжигу в 300 °C – 500 °C в течение 1 часа. Изучение зеренной структуры проведено на просвечивающем электронном микроскопе JEM-2100 при ускоряющем напряжении 200кВ и рабочем увеличении в колонне микроскопа 50000 – 250000 крат. По полученным электронно-микроскопическим изображениям методом секущей измерялись продольный и поперечный размеры зерен.

Результаты. В качестве исследуемого материала был выбран сплав ВТ1-0. Комбинированным методом *abc*-прессования и прокатки была получена исходная структура в СМК состоянии. Методом ПЭМ было исследовано продольное сечения заготовки титана ВТ1-0.

В продольном сечении заготовки наблюдаются сильно вытянутые элементы (зерна) с хорошо выраженной текстурой (Рис. 1). Средний поперечный размер зерна составил 0,14 ± 0,02 мкм. Согласно масштабной классификации данное структурное состояние соответствует УМЗ-состоянию. Распределение поперечных размеров зерен является одномодальным, основная доля представлена зернами, поперечные размеры которых лежат в интервале 0,1 – 0,15 мкм. Коэффициент анизотропии (L/d) равен ~ 5,6. Средний продольный размер зерна составил 0,79 ± 0,3 мкм. Основную долю (70 %) имеют элементы с размерами менее 1 мкм. Однако в микроструктуре наблюдаются в незначительном количестве (около 10 % объема) элементы с размерами около 2,5 – 3 мкм.

Рис. 1. Микроструктура сплава ВТІ-0 после abc-прессования а – светлопольное изображение; б – распределение поперечных размеров зерен (d); в – распределение продольных размеров зерен (L) (продольное сечение образца)

Для получения сплава BT1-0 с различным размером зерен сплав был подвержен отжигу в пределах 300 °C – 500 °C в течение одного час.

После отжига при температуре 300°С 1 час наблюдаются признаки процесса рекристаллизации: происходит уменьшение, как продольного, так и поперечного размера зерна, при этом вытянутая зеренная структура сохраняется (Рис. 2). Средний продольный размер зерна уменьшился до $0,53 \pm 0,1$ мкм, а поперечный размер зерна изменился до $0,08 \pm 0,02$ мкм. По масштабной классификации данное структурное состояние соответствует СМК-состоянию. Зерна являются анизотропными, коэффициент анизотропии уменьшился и составляет ~ 5.

Рис. 2. Зеренная структура сплава ВТ1-0 после отжига 300 °С 1час а – светлопольное изображение; б – распределение поперечных размеров зерен (d); в – распределение продольных размеров зерен (L) (продольное сечение образца)

После увеличении температуры отжига до 400 °С 1час (Рис. 3) происходит увеличение размера зерна, как продольного, так и поперечного. Границы зерен становятся более четкими, увеличивается ширина
экстинкционных контуров, что говорит о снижении уровня внутренних напряжений. Появляются более мелкие зерна. Поперечный размер зерна увеличился до $0,15 \pm 0,035$ мкм, по масштабной классификации данное структурное состояние соответствует УМЗ-состоянию. Основную долю составляют зерна в пределах 0,1 - 0,2 мкм, но также около 5% наблюдаются зерна с поперечным размером зерна $0,35 \div 0,45$ мкм. Продольный размер зерна увеличивается незначительно до $0,45 \pm 0,1$ мкм. Структура становится менее однородной, основная доля зерен теперь имеет поперечный размер в интервале $0,3 \div 0,6$ мкм. Коэффициент анизотропии уменьшается до 3.

Рис. 3. Микроструктура сплава ВТІ-0 после отжига 400 °С Ічас а – светлопольное изображение; б – распределение поперечных размеров зерен (d); в – распределение продольных размеров зерен (L) (продольное сечение образца)

После отжига при температуре 500 °С (Рис. 4) процессы рекристаллизации протекают более активно. Зерна становятся изотропными. Большинство зерен освобождается от дислокаций. Образуется больше крупных зерен, а мелкие зерна располагаются в их стыках. Было построено два распределения зерен по размеру для мелких и крупных зерен. Распределение крупных зерен является одномодальным, средний размер крупных зерен составляет 1,96 мкм, основную долю, около 85 % составляют зерна от 1 до 3 мкм. Данный размер зерна позволяет нам отнести по масштабной классификации данную структуру к мелкозернистому состоянию (МЗ). Распределение для малого размера зерна является также одномодальным и средний размер мелких зерен составляет 0,3 мкм. Суммарный средний размер зерна для сплава ВТ1-0 после отжига 500 °С составляет 1,7 мкм.

Рис 4. Микроструктура сплава ВТІ-0 после отжига 500 °С Ічас а – светлопольное изображение; б – распределение размеров зерен (продольное сечение образца)

Заключение. Проведенные исследования показали, что отжиг сплава BT1-0 после abспрессования при 300 – 500 °C, 1 час приводит к, во-первых, к увеличению поперечного размера зерна и уменьшению продольного размера зерна. При этом коэффициент анизотропии уменьшается. Во-вторых, к смене структурного состояния, согласно масштабной классификации от СМК до M3.

Работа выполнена при финансовой поддержке РФФИ № 20-38-90066.

Россия, Томск, 26-29 апреля 2022 г.

УДК 538.951

ВЛИЯНИЕ ДИСПЕРСНЫХ ЧАСТИЦ НА ЗАКОНОМЕРНОСТИ ВОДОРОДНОГО ОХРУПЧИВАНИЯ ВЫСОКОЭНТРОПИЙНОГО СПЛАВА КАНТОРА

А.С. Нифонтов^{1,2}, М.Ю. Панченко², Е.А. Загибалова^{1,2}
Научный руководитель: доцент, д.ф.-м.н. Е.Г. Астафурова
¹Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050
²Институт физики прочности и материаловедения СО РАН, Россия, г. Томск, пр. Академический, 2/4, 634055
Е-mail: <u>asn42@tpu.ru</u>

EFFECT OF DISPERSED PARTICLES ON FEATURES OF HYDROGEN EMBRITTLEMENT OF HIGH-ENTROPY CANTOR ALLOY

A.S. Nifontov^{1,2}, M.Yu. Panchenko², E.A. Zagibalova^{1,2} Scientific Supervisor: Assistant Professor, Dr., E.G. Astafurova ¹National Research Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 ²Institute of Strength Physics and Materials Science SB RAS, Russia, Tomsk, Akademichesky pr. 2/4, 634055 E-mail: asn42@tpu.ru

Abstract. Features of hydrogen embrittlement of high-entropy CoCrFeMnNi alloy after age-hardening at temperature of 900°C for 1 h were investigated. It was shown that σ -phase precipitates are formed along the grain boundaries in the specimens after age-hardening. The precipitation of grain boundary σ -phase particles contributes to a decrease in the thickness of the brittle hydrogen-induced layer and the hydrogen embrittlement index in aged specimens compared to the initial single-phase specimens of the Cantor alloy.

Введение. В данный момент внимание исследований приковано к новому классу материалов высокоэнтропийным сплавам (ВЭС). Одним из известных представителей ВЭС с ГЦК решеткой является эквиатомный сплав CoCrFeMnNi (сплав Кантора) [1]. Основной особенностью данного сплава является: его структура – однофазный неупорядоченный твердый раствор, сохраняющий высокую пластичность и вязкий характер разрушения при испытаниях на одноосное растяжение от комнатной до криогенных температур [2]. В настоящее время в литературе мало исследований по воздействию водорода на высокоэнтропийный сплав Кантора и их результаты противоречивы. Было показано, что при термообработках или горячей прокатке в сплаве Кантора возможно выделение частиц вторичных фаз (L1₀, B2, σ), которые могут изменять его механические свойства [3]. Известно, что вторичные фазы в сталях могут являться ловушками для водорода, способствуя тем самым устойчивости к эффекту водородного охрупчивания [4]. Поэтому цель данной работы – установить влияние дисперсионного твердения на закономерности водородного охрупчивания высокоэнтропийного сплава Кантора.

Методы исследования. В качестве материала для исследования был выбран многокомпонентный высокоэнтропийный сплав Кантора (ВЭС) с ГЦК решёткой. Химический состав исследуемого сплава: Fe-19,8 Mn-19,5 Cr-18,6 Ni-21,0 Co-21,1 (масс. %). Для получения гомогенного твердого раствора была

проведена термомеханическая обработка (ТМО) сплава, включающая отжиги и прокатку (И-ВЭС). Часть образцов после ТМО подвергли старению при температуре 900°С в течение 1 часа (С-ВЭС). Наводороживание образцов производили электролитическим методом при плотности тока $j_H = 10$ мА/см² в течение 50 часов при комнатной температуре в 3%-водном растворе NaCl в присутствии 3 г/л NH₄SCN в качестве катализатора. Поверхности разрушения образцов были изучены методом растровой электронной микроскопии (РЭМ, микроскоп LEO EVO 50, Zeiss). Исследование микроструктуры проводили с помощью светового микроскопа (СМ, микроскоп Altami MET 1C).

Результаты. На рисунке 1 *a*, δ приведены СМ-изображения поверхности И-ВЭС и С-ВЭС образцов (зёренная структура выявлена химическим травлением). Оба состояние крупнокристаллические с размером зерна около 200 мкм. На рисунке 1 *a*, δ присутствует большое количество двойников отжига. Границы образцов С-ВЭС вытравились сильнее (рис 1 δ), что свидетельствует о выделении зернограничной фазы, появившейся вследствие старения образцов. Анализ СМ-изображений и электронно-микроскопические исследования показали, что И-ВАС образцы обладают однофазной аустенитной структурой, а в С-ВЭС образцах наблюдается выделение пластинчатой интерметаллидной σ -фазы по границам зерен (рис 1 *в*). Размер пластин не превышает 80-150 нм в длину, при этом в теле зерен частиц обнаружено не было. Результаты ЭДС анализа σ -фазы в С-ВЭС образцах представлены на рисунке 1 *в*.

Рис. 1. СМ-изображения поверхности образцов: (а) - И-ВЭС, (б) - С-ВЭС; (в) - ПЭМ-изображение С-ВЭС образца с ЭДС-анализом дисперсных частиц

В таблице 1 приведена зависимость механических характеристик: удлинения до разрушения δ , предела текучести $\sigma_{0,2}$, предела прочности σ_6 при комнатной температуре для исследуемых И-ВЭС и С-ВЭС образцов до и после наводороживания. Анализ экспериментальных данных показывает, что насыщение водородом вызывает увеличение $\sigma_{0,2}$ в обоих состояниях, что вызвано твердорастворным упрочнением сплава атомами водорода. Наводораживание вызывает заметное снижение предела прочности σ_6 в образцах И-ВЭС на 15 МПа, а в образцах С-ВЭС, наоборот, происходит увеличение σ_6 на 55 МПа. Коэффициент водородного охрупчивания К_н был вычислен по формуле (1):

$$\mathbf{K}_{\mathrm{H}} = \left[\left(\delta_0 - \delta_H \right) / \delta_0 \right] \times 100\%,\tag{1}$$

где δ_0 и δ_H – полное удлинение до разрушения ненаводороженных и наводороженных образцов. Он характеризует уменьшение удлинения до разрушения, вызванное водородом. В С-ВЭС сплаве величина $K_H^{C-BЭC}$ почти в два раза меньше, чем в И-ВЭС сплаве. Это указывает на положительное влияние выделения зеренограничных частиц σ -фазы при старении на устойчивость к водородному охрупчиванию.

На рисунке 2 приведены РЭМ-изображения поверхностей разрушения И-ВЭС и С-ВЭС образцов с предварительным насыщением водородом и без наводораживания. Образцы, которые испытывали без насыщения водородом, разрушались вязко транскристаллитно с образованием ямочного излома (рис. 2 *a*, *в*).

Таблица 1

Влияние насыщения во	одородом на .	механические	свойства:	(а) - удлинені	е до разрушения;	(б) - предел

Материал	δ, %, ±2 %	$σ_{0.2}$, ΜΠa, ±5 ΜΠa	$ σ_B $, ΜΠa, ±5 ΜΠa	$K_{H}, \%$
И-ВЭС	62	160	490	22
И-ВЭС+Н	48	185	475	23
С-ВЭС	65	155	470	12
С-ВЭС+Н	57	215	525	12

текучести; (в) - предел прочности; (г) - коэффициент водородного охрупчивания

В образцах без частиц хрупкий наводороженный слой разрушается преимущественно интеркристаллитно, однако на поверхности разрушения также присутствуют транскристаллитные фасетки (рис. 2 б). Хрупкий наводороженный слой в С-ВЭС образцах разрушается исключительно интеркристаллитно (рис. 2 ϵ). Толщина хрупких слоев (D_H) составляет: 70 ± 21 мкм для И-ВЭС и 28 ± 7 мкм С-ВЭС образцов, что коррелирует с данными механических свойств, отношение $D_H^{H-BЭC}/D_H^{C-BЭC} \approx K_H^{H-BЭC}/K_H^{C-BЭC} \approx 2.$

Рис. 2 РЭМ-изображения поверхности разрушения И-ВЭС (а,б) и С-ВЭС (в, г) образцов после испытаний на одноосное растяжение: (а, в) - без предварительного наводороживания; (б, г) – с предварительным наводороживанием

Заключение. Таким образом, образцы сплава CoCrFeMnNi после старения при температуре 900°C в течение часа оказываются более устойчивы к эффектам водородного охрупчивания, по сравнению с исходными однофазными образцами. Это вызвано выделением частиц σ-фазы вдоль границ в состаренных образцах, что приводит к появлению большого количества мест для накопления водорода на межфазных и межзеренных границах, которые затрудняют диффузию водорода вглубь образца.

Работа выполнена при поддержке Российского научного фонда (проект № 20-19-00261).

- Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Materials Science and Engineering A – 2004 – V. 375–377 – P. 213–218.
- Schuh B., Mendez-Martin F., Völker B., George E.P., Clemens H., Pippan R. A. Hohenwarter Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation // Acta Mater. – 2015 – V. 96 – P. 258–268
- Klimova M.V., Shaysultanov D.G., Zherebtsov S.V., Stepanov N.D. Effect of second phase particles on mechanical properties and grain growth in a CoCrFeMnNi high entropy alloy // Materials Science and Engineering: A – 2019 – V. 748 – P. 228-235
- Wei F.G., Tsuzaki K. Quantitative Analysis on Hydrogen Trapping of TiC Particles in Steel // Metall and Mat Trans A. – 2006 – V. 37 – P. 331–353

УДК 538.97

ОСОБЕННОСТИ ОБРАЗОВАНИЯ КОМПЛЕКСА ИЗ ВАКАНСИИ И СМЕЩЕННОГО АТОМА В Альфа цирконии

С.О. Огнев, Л.А. Святкин

Научный руководитель: к.т.н., Р.С. Лаптев Национальный исследовательский Томский политехнический университет, Россия, г.Томск, пр. Ленина, 30, 634050 E-mail: <u>soo1@tpu.ru</u>

FEATURES OF THE FORMATION OF THE COMPLEX OF VACANCY AND DISPLACED ATOM IN ALPHA ZIRCONIUM

<u>S.O. Ognev</u>, L.A. Svyatkin Scientific Supervisor: Ph.D., R.S. Laptev Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: <u>soo1@tpu.ru</u>

Abstract. We present the results of ab initio study of the formation of vacancies in the zirconium lattice due to the displacement of one atom from the equilibrium position to the interstitial sites of the ideal lattice. The six nonequivalent displacements were considered. An increase in the total lattice energy due to the formation of complex of vacancy and displaced atom in the lattice was established. It was shown that the atom displaced to the nearest interstitial sites are returned to the ideal lattice site. The displacement of a zirconium atom from the ideal lattice site to the nearest tetrahedral interstitial site requires almost 1.3 times as much energy as the octahedral interstitial site.

Введение. Сплавы на основе циркония широко используют для изготовления оболочек тепловыделяющих элементов в водо-водяных ядерных реакторах на тепловых нейтронах. В процессе эксплуатации эти сплавы подвергаются интенсивному радиационному воздействию, что приводит к образованию и миграции вакансий в цирконии [1, 2]. При этом вакансии не только сильно влияют на диффузионные свойства межузельных атомов и других дефектов (например, растворенных атомов), но также являются источником зарождения петель и пустот. Скопление вакансий в виде пустот или петель может привести к ухудшению механических и термических свойств материалов, таких как набухание, охрупчивание, упрочнение и снижение теплопроводности. Следовательно, детальное изучение процесса образования вакансионных дефектов необходимо для прогнозирования эксплуатационных свойств ядерных материалов [3]. Целью данной работы является выявление особенностей взаимодействия вакансии и смещенного из узла атома в решетке альфа циркония.

Метод и детали расчета. Расчеты из первых принципов были выполнены в рамках теории функционала электронной плотности с использованием оптимизированного сохраняющего норму псевдопотенциала Вандербильта [4]. Для описания обменных и корреляционных эффектов использовалось приближение обобщенного градиента (GGA) в форме Пердью, Берка и Эрнцехофа [5]. Работы выполнялась в пакете программ ABINIT. Расчетные ячейки представляли собой блок элементарных ячеек ГПУ решетки

Россия, Томск, 26-29 апреля 2022 г.

циркония 3×3×2. Была проведена оптимизация параметров решетки и релаксация положений всех атомов в расчетной ячейке системы цирконий-вакансия. Релаксация считалась завершенной при значении сил, действующих на атомы, менее 50 мэВ/Å. На каждой итерации самосогласования собственные значения гамильтониана рассчитывались в сетке k-точек 3×3×3 всей зоны Бриллюэна. Энергия обрезания при разложении волновой функции по базису плоских волн, составила 820 эВ.

Результаты и обсуждения. В работе образование вакансии в решетке циркония моделировалось смещением одного атома из узла идеальной решетки в междоузлие. В работе было рассмотрено шесть различных положений смещенного атома циркония относительно вакансии (рисунок 1). В результате релаксации решетка циркония заметно изменялась под действием сил и напряжений от присутствия двух дефектов: вакансии и смещенного атома.

Энергия образования комплекса из вакансии и смещенного атома рассчитывалась по формуле:

$$\Delta E = E_{\rm Zr-vac} - E_{\rm Zr} \tag{1}$$

где E_{Zr} и E_{Zr+vac} – полные энергии расчетных ячеек Zr_{36} при отсутствии и наличии комплекса из вакансии и смещенного атома, соответственно. Результаты расчетов представлены в таблице 1. Из таблицы видно, что для положения ОЗ энергия образования комплекса минимальна среди всех рассмотренных. Это, возможно обусловлено сильным смещением атомов циркония, окружающих это положение, в сторону вакансии в результате релаксации. Отметим, что в случаях О1 и T1 вакансия и смещенный атом рекомбинировали. Изменение полной энергии решетки циркония в процессе этой рекомбинации представлены на рисунке 2.

Рис. 1. Рассмотренные положения смещенного атома циркония. Синим цветом показаны тетраэдрические междоузлия идеальной решетки циркония, красным – октаэдрические. Зеленым цветом показаны атомы циркония, фиолетовым – место образования вакансии

Таблица 1

Междоузлие,	Расстояние от	Энергия образова	Энергия образования вакансии, эВ.		
занимаемое смещенным атомом	смещенного атома до вакансии, Å	Текущий расчет	Другие работы		
02	4,056	5,499	2,069 [6]		
O3	4,729	2,419	2,05 [7]		
Τ2	3,814	5,617			
Т3	5,724	5,967			

Энергия образования вакансии в решетке циркония

Рис. 2. Изменение полной энергии системы при смещении атома из междоузлия в вакансию в результате релаксации

Заключение. В работе были рассчитаны энергии образования вакансии в решетке циркония в случае наличия смещенного атома, которые лежат в промежутке от 2,4 до 6,0 эВ, что существенно превосходит данные, имеющиеся в литературе. Причина существенного отличия заключается в наличии больших напряжений и сил, действующих на атомы решетки за счет сравнительно небольшого размера расчетной суперячейки. Смещение атома циркония из узла идеальной решетки в ближайшее тетраэдрическое междоузлие требует энергии практически в 1,3 раза больше, чем в октаэдрическое.

Исследование выполнено за счет гранта Российского научного фонда (проект № 20-79-10343).

СПИСОК ЛИТЕРАТУРЫ

- César González, Roberto Iglesias. Migration mechanisms of helium in copper and tungsten // The Journal of Materials Science. – 2014. – Vol. 49. – P. 8127–8139.
- Cao J.L, Geng W.T. Migration of helium-pair in metals // The Journal of Nuclear Science. 2016. Vol. 478. – P. 13–25.
- Zhang P., Li Y., Zhao J. Materials selection for nuclear applications in view of divacancy energies by comprehensive first-principles calculations // The Journal of Nuclear Science. – 2020. – Vol. 538. – P. 152253.
- Hamann D.R. Optimized norm-conserving Vanderbilt pseudopotentials // Phys. Rev. B 2013. Vol. 88. № 8. – P. 085117(1-10).
- Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Lett. - 1996. - Vol. 77. - № 18. - P. 3865-3868.
- L.A. Svyatkin, D.V. Terenteva, R.S. Laptev Influence of vacancy on helium interaction with α-Zirconium // Journal of Physics: Conference Series. - 2021. - №1989
- Wimmer E., Christensen M., Wolf W., Howland W.H., Kammenzind B., Smith R.W. Hydrogen in zirconium: Atomistic simulations of diffusion and interaction with defects using a new embedded atom method potential // Journal of Nuclear Materials. – 2020. – Vol. 532. – P. 152055.

Россия, Томск, 26-29 апреля 2022 г.

УДК 669-1

МЕХАНИЧЕСКИЕ СВОЙСТВА И ТРИБОЛОГИЧЕСКОЕ ПОВЕДЕНИЕ ПОЛИМЕТАЛЛИЧЕСКИХ ОБРАЗЦОВ СИСТЕМЫ СU-FE, ПОЛУЧЕННЫХ МЕТОДОМ ДВУХПРОВОЛОЧНОЙ ПОДАЧИ ПРИ ЭЛЕКТРОННО-ЛУЧЕВОЙ АДДИТИВНОЙ 3D-ПЕЧАТИ С РЕГУЛИРОВАНИЕМ СОДЕРЖАНИЯ СТАЛИ В СИСТЕМЕ

<u>К.С. Осипович</u>, А.В. Чумаевский, Е.О. Княжев Научный руководитель: д.т.н. Е.А. Колубаев ¹Институт физики прочности и материаловедения СО РАН, Россия, г. Томск, пр. Академический, 2/4, 634055 E-mail: Osipovich_k@ispms.ru

MECHANICAL PROPERTIES AND TRIBOLOGICAL BEHAVIOR OF CU-FE SYSTEM POLYMETAL FABRICATED BY DOUBLE WIRE-FEED ELECTRON BEAM ADDITIVE 3D-PRINTING

<u>K.S. Osipovich</u>, A.V. Chumaevskii, E.O. Knyazhev Scientific Supervisor: Dr. E.A. Kolubaev ¹Institute for Physics of Strength and Material Science, Russia, Tomsk, Academic str. 2/4, 634055

E-mail: Osipovich_k@ispms.ru

Abstract. In the present work, mechanical and tribological studies of samples of Cu-Fe system with different content of steel in the copper matrix were carried out. Heterogeneous samples containing 10, 25, 36 and 50 % of steel 321 in the C11000 matrix were obtained by double wire-feed electron beam additive technology. Changes in the deformation behavior of the samples were shown, which can be explained by the presence of copper hardening by introducing steel into the composition. Tribological tests revealed a significant decrease in the average friction coefficient, which is observed mainly in samples containing 50 % of steel. This is due to a smaller role of friction setting and plastic displacement of specimen material from the friction contact zone when steel is introduced. Changes in mechanical properties of materials with increasing steel content up to 50 % mainly consist in a significant increase in ductility.

Введение. В настоящее время развитие аддитивных технологий позволяет получать изделия для различных отраслей техники с управлением структурой и свойствами в процессе печати [1]. Цели создания нестандартных сочетаний эксплуатационных свойств в одном изделии могут быть различными. С одной стороны, экономия дорогостоящих материалов в деталях с упрочнением только в необходимых локальных областях. С другой стороны, получение изделий с уникальными сочетаниями структуры и свойств, недостижимыми традиционными применяемыми технологиями. Наиболее развитыми методами аддитивного получения полиметаллических изделий в современной научно-исследовательской литературе являются технологии, основанные на селективном сплавлении порошков, наносимых послойно на подложку (selective laser melting, SLM) [2,3]. Технологии высокопроизводительного аддитивного электронно-лучевого проволочного производства (electron beam additive manufacturing, EBAM) для изготовления полиметаллических изделий применяются реже [4,5]. Возможность применения EBAM технологии для формирования изделий с различным сочетанием структуры и свойств приводит к необходимости проектирования и применения на практике деталей, созданных из разнородных материалов. В качестве примера изделий из разнородных материалов относится сочетание меди и аустенитной нержавеющей стали [6]. Данное сочетание позволяет объединять в детали высокую теплопроводность и электропроводность одних объемов с высокой коррозионной стойкостью и прочностью других участков.

Экспериментальная часть. Образцы были получены на экспериментальной установке для аддитивного электронно-лучевого производства металлических изделий. Для 3D-печати образцов использовали проволоку из нержавеющей стали 06Х19Н9Т и проволоку технически чистой меди марки М1. Электронным лучом формировалась ванна расплава. В нее подавали проволоку и осуществляли 3Dпечать образца в виде вертикальной стенки методом послойного нанесения материала. Для исследований закономерностей пластической деформации и трибологического поведения полиметаллов системы Cu-Fe. полученных с различным соотношением компонентов системы были изготовлены полиметаллические изделия в виде вертикальных стенок на основе меди с введением при печати 10, 25, 36 и 50 % стали 06Х19Н9Т. На растяжение образцы в форме двойной лопатки с размерами $2.5 \times 2.5 \times$ 12 мм. Механические испытания на растяжение проводили при скорости 1 мм/мин на универсальной испытательной машине УТС 110М. На трение образцы форме параллелепипеда имели следующие размеры $3 \times 3 \times 10$ мм. Испытания на трение производили на лабораторном трибометре по схеме «дискпалец» при скорости вращения контртела 250 об/мин, радиусе дорожки трения 10 мм, нагрузке на образец 15 Н, контртелом выступал диск из стали марки.

Результаты. Диаграммы испытаний на растяжение образцов полиметаллов Си-Fe приведены на рисунке 1а. Для образцов с содержанием стали 10 % характерны наименьшие значения предела прочности (220 МПа) и предела текучести (68 МПа). При этом их механические свойства выше, чем у образцов чистой меди, полученных аналогичным способом. При увеличении содержания стали (25, 36, 50 %) предел текучести находится на одном уровне и составляет в среднем 145-155 МПа, а предел прочности – 370-380 МПа. При этом наблюдаются различия в значениях относительного удлинения при разрыве: для образцов с содержанием стали 50 % достигнуты максимальные значения, которые составляют порядка 13-15 %. Такие изменения деформационного поведения образцов можно объяснить наличием предела в упрочнении меди путем введения в состав стали. Аналогичные закономерности можно выявить при анализе результатов трибологических испытаний данных материалов (рисунок 2б). Существенное снижение среднего коэффициента трения наблюдается в основном у образцов с содержанием 50 % стали. Типичным для контакта сталь-сталь является высокая величина разброса значений коэффициента трения при испытании. Обусловлено это тем, что трение происходит с минимальным окислением и высокой ролью адгезионной составляющей. Величина износа для образцов с содержанием стали 10-36 % существенно ниже, чем при трении чистой меди. В образцах с содержанием стали 50 % - повышается в сравнении с образцами композитов с меньшим содержанием, и находится на уровне величины износа чистой меди. Это происходит за счет более высокой роли схватывания при трении и пластического оттеснения материала образца из зоны фрикционного контакта.

Рис. 1. Результаты механических (а) и трибологических (б) испытаний образцов системы Си-Fe с различным содержанием стали в медной матрице

Заключение. Таким образом, с точки зрения повышения пластичности материала введение более 25 % стали в медь при электронно-лучевой печати может быть оправдано, но для повышения прочности или износостойкости является нецелесообразным. Введение 50 % стали может быть по меньшей мере избыточным, по большей – негативным для свойств материала. До введения 25 % стали происходит увеличение прочностных показателей, после которого при дальнейшем увеличении концентрации стали в композите не происходит повышения прочности материала.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-32-90173.

- DebRoy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., Beese A.M., Wilson-Heid A., De A. and Zhang W. Additive manufacturing of metallic components // Process, structure and properties Prog. Mater. Sci. – 2018. – V.92. – P. 112–224.
- 2 Ding H., Xiao Y., Bian Z., Wu Y., Yang H., Wang H. and Wang H. Design, microstructure and thermal stability of a novel heat-resistant Al-Fe-Ni alloy manufactured by selective laser melting // J. Alloys Compd. - 2021. - V. 885. - P. 160949.
- 3 Chen J., Yang Y., Song C., Wang D., Wu S. and Zhang M. Influence mechanism of process parameters on the interfacial characterization of selective laser melting 316L/CuSn10 // Mater. Sci. Eng. A. – 2020. – V. 792. – P. 139316.
- 4 Xu J., Peng Y., Zhou Q., Fan J., Kong J., Wang K., Guo S. and Zhu J. Microstructure and mechanical properties of Ti-52 at% Al alloy synthesized in-situ via dual-wires electron beam freeform fabrication // Mater. Sci. Eng. A. – 2020. – V. 798. – P. 140232.
- 5 Gusarova A.V., Chumaevskii A.V., Osipovich K.S., Kalashnikov K.N. and Kalashnikova T.A. regularities of structural changes after friction stir processing in materials obtained by the additive method // Nanosci. Technol. An Int. J. – 2020. – V. 11. – P. 195–205.
- 6 Shu X., Chen G., Liu J., Zhang B. and Feng J. Microstructure evolution of copper/steel gradient deposition prepared using electron beam freeform fabrication // Mater. Lett. – 2018. – V. 213. – P. 374–7.

УДК 539.51

МИКРОСТРУКТУРА И МЕХАНИЧЕСКИЕ СВОЙСТВА КОМПОЗИТОВ БРАМц9-2/10Х18Н10Т, ПОЛУЧЕННЫХ ЭЛЕКТРОННО-ЛУЧЕВОЙ АДДИТИВНОЙ ТЕХНОЛОГИЕЙ С РАЗЛИЧНОЙ КОНЦЕНТРАЦИЕЙ 10Х18Н10Т

<u>А.О. Панфилов</u>, А.В. Чумаевский, Д.А. Гурьянов Научный руководитель: А.П. Зыкова Институт физики прочности и материаловедения СО РАН Россия, г. Томск, пр. Академический, д. 2/4, 634055 Email: alexpl@ispms.ru

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF CUA19MN2/SS321 COMPOSITES PRODUCED BY ELECTRON-BEAM ADDITIVE TECHNOLOGY WITH VARYING CONCENTRATION OF SS321

<u>A.O. Panfilov</u>, A.V. Chumaevsky, D.A. Guryanov Scientific Supervisor: A.P. Zykova

Institute of Physics of Strength and Materials Science, Russia, Tomsk, Akademicheskiy Ave. 2/4, 634055 Email: <u>alexpl@ispms.ru</u>

Abstract. For the first time CuA19Mn2/SS321 composites with different ratios of components were obtained by electron-beam additive technology (EBAM) with simultaneous feeding of two wires. The microstructure of all composites is characterized by the α -Cu matrix, the dispersion hardened phase κ_{iv} , and globular α -Fe(Cr) particles, inside which spherical Cu and β' -phase particles are located. As the concentration of steel in the bronze increases, the α -Fe(Cr) particles grow. The anisotropy of mechanical properties of CuA19Mn2/321SS composites is insignificant and amounts to 3-8 %.

Введение. Алюминиевые бронзы с содержанием до 12 вес.% Аl наряду с добавками Fe, Ni, Mn являются широко используемыми материалами в промышленности. Эти сплавы обладают умеренно высокой прочностью, отличной коррозионной стойкостью, хорошими формообразующими свойствами и электропроводностью [1]. Вышеуказанные свойства делают алюминиевую бронзу одним из наиболее востребованных материалов в судостроении [2], однако недостаток прочности, по сравнению с нержавеющими сталями, делают область её применения несколько ограниченной. В таком случае решением проблемы может быть получение композитных материалов из алюминиевой бронзы и аустенитной нержавеющей стали. Одним из методом, способным получать такие композиты, является электронно-лучевое аддитивное производство [3]. Целью исследования являлось изучить микроструктуру и механические свойства композитов «бронза-сталь» с различной концентрацией стали, полученных методом электронно-лучевой аддитивной технологии.

Экспериментальная часть. Получение композитов в виде стенок осуществлялось на экспериментальной установке электронно-лучевого аддитивного производств (ЭЛАП) по схеме, представленной на рисунке 1. Печать осуществлялась плавлением проволок бронзы марки БрАМц9-2 и стали 10Х18Н10Т, подаваемых одновременно, с образованием ванны расплава и последующей их

кристаллизацией в виде слоя. Были получены композиты с тремя различными концентрациями: «90% бронзы – 10% стали», «75% бронзы – 25% стали», «50% бронзы – 50% стали». Полученные композиты «сталь-бронза» сравнивались с бронзой без добавления стали, полученной ЭЛАП. Для исследования макро- и микроструктуры, фазового состава и механических свойств образцы вырезались согласно схеме, представленной на рисунке 1. Образцы композитов «бронза-сталь» шлифовали, полировали и травили раствором 30 мл HCl + 5 г FeCl₃-6H₂O + 60 мл H₂O. Макро- и микроструктуру исследования методами оптической микроскопии (OM) и просвечивающей электронной микроскопии (ПЭМ). Для определения механических характеристик проводились испытания на растяжение на универсальной испытательной машине УТС 110М-100.

Рис. 1. Схема печати и вырезки образцов для ОМ, ПЭМ и механических испытаний

По данным ОМ установлено, что в макроструктуре образцов бронзы и композитов «бронза-сталь» отсутствуют дефекты типа несплошностей, трещин и пор. Микроструктура бронзы характеризуется зернами α -Cu, по границам которых расположена остаточная β' -фаза, образованная в результате высоких скоростей при охлаждении во время ЭЛАП (рис. 2 а). Введение различной концентрации стали в бронзу во время ЭЛАП приводит к формированию в твердом растворе α -Cu железосодержащих частиц α -Fe(Cr) глобулярной формы (2 б-г). Средний размер α -Fe(Cr) в композитах «90% бронзы – 10% стали», «75% бронзы – 25% стали», «50% бронзы – 50% стали» составляет 0,8 мкм, 12,6 мкм и 20,3 мкм соответственно. По данным ПЭМ с добавлением стали в твердом растворе α -Cu происходит формирование дисперсных частиц фазы Fe₃Al, так называемой к_{iv}-фазе (рис. 2 е-з). Внутри частиц α -Fe(Cr) присутствуют крупные и дисперсные частицы Cu и β' -фазы. С увеличением концентрации стали объемная доля частиц Cu и β' -фазы увеличивается.

Рис. 2. Микроструктура образцов бронзы БрАМц9-2 (а, д) и композитов «90% бронзы – 10% стали» (б, е), «75% бронзы – 25% стали» (в, ж), «50% бронзы – 50% стали» (г, з)

Россия, Томск, 26-29 апреля 2022 г.

Том 1. Физика

В таблице 1 представлены результаты испытаний образцов на статическое растяжение (схема вырезки образцов на рисунке 1). Для образцов алюминиевой бронзы БрАМц9-2 деформация разрушения в значительной степени зависит от направления изготовления образцов. Образцы, вырезанные в горизонтальном направлении, имеют значения $\sigma_{0,2}$ и σ_B равные 140 МПа и 487МПа соответственно, что на 20 МПа и 40 МПа больше, по сравнению с вертикальными образцами (таблица 1). При этом є образцов, вырезанных в горизонтальном направлении, в 2 раза больше, чем δ вертикальных образцов. σ_B и є всех композитов демонстрируют незначительную анизотропию (таблица 1). С увеличением содержания стали в бронзе σ_B увеличивается, при этом значения є уменьшаются. Для композита «50% бронзы – 50% стали» достигается наибольшее значение σ_B (до 800 МПа) и наименьшее значение деформации (0,18%) по сравнению со всеми образцами (таблица 1).

Таблица 1

Образец	Направление вырезки лопаток	σ _{0,2} , МПа	$σ_B$, ΜΠα	ε, %
Enourse EndMu0 2	вертикальное	100	466	0,7
бронза брАмиця-2	горизонтальное	140	486	0,35
«90% бронзы –	вертикальное	235	645	0,52
10% стали»	горизонтальное	235	630	0,54
«75% бронзы –	вертикальное	310	644	0,39
25% стали»	горизонтальное	310	669	0,42
«50% бронзы –	вертикальное	600	815	0,24
50% стали»	горизонтальное	600	822	0,24

Механические характеристики бронзы БрАМи9-2 и композитов «бронза-сталь»

Заключение. Методом электронно-лучевого аддитивного производства получены бездефектные композиты «сталь-бронза» с различной концентрацией стали. Микроструктура всех композитов характеризуется матрицей α-Сu, дисперсионной упрочненной фазой κ_{iv}, и глобулярными частицами α-Fe(Cr), внутри которых располагаются сферические частицы Cu и β'-фазы. По результатам механических испытаний установлено, что с повышением концентрации нержавеющей стали наблюдается повышение значения предела прочности до 822 МПа и уменьшение пластичности.

Работа выполнена в рамках государственного задания ИФПМ СО РАН, тема номер FWRW-2021-0012.

- Dharmendra C., Rice K.P., Amirkhiz S., Mohammadi M. Atom probe tomography study of κ-phases in additively manufactured nickel aluminum bronze in as-built and heat-treated conditions // Materials & Design – 2021.
- Ramesh Babu, Govindaraj, Dr. Eva Junghans, Dr. Isak Andersen, Young ki Lim, Dr. Per Lindström. Additive manufactured marine component – Ni Al bronze propeller // Procedia Structural Integrity – 2021. p.20-25.
- Osipovich K.S., Chumaevskii A.V., Gusarova A.V., Kalashnikov K.N., Kolubaev E.A. Mechanical properties of steel-copper polymetal manufactured by the wire-feed electron-beam additive technology // High Temperature Material Processes – 2020. P.91-98.

УДК 544.252.22

СВЕТОИНДУЦИРОВАННАЯ ГЕНЕРАЦИЯ СТАТИЧЕСКИХ И ДИНАМИЧЕСКИХ СУПРАМОЛЕКУЛЯРНЫХ СТРУКТУР В СВЕТОЧУВСТВИТЕЛЬНЫХ ХИРАЛЬНЫХ ЖИДКИХ КРИСТАЛЛАХ

<u>А.О. Пивень</u>, Д.Д. Дармороз, П.И. Зырянова Научный руководитель: ведущий научный сотрудник, к.ф.-м.н. Т. Орлова Национальный исследовательский университет ИТМО, Россия, г. Санкт-Петербург, Кронверский проспект, д.49А, 197101 E-mail: piven@infochemistry.ru

LIGHT-INDUCED GENERATION OF STATIC AND DYNAMIC SUPRAMOLECULAR STRUCTURES IN LIGHT-RESPONSIVE CHIRAL NEMATIC LIQUID CRYSTALS

A.O. Piven, D.D. Darmoroz, P.I. Zyryanova Scientific Supervisor: Dr. T. Orlova National Research ITMO University, Russia, St. Petersburg, Kronverksky str., 49A, 197101 E-mail: piven@infochemistry.ru

Abstract. The paper presents a method for creating a wide wealth of static and dynamic localized complex structures in thin films of a light-responsive chiral nematic liquid crystal by optically induced photochemical transformations of chiral dopant molecules.

Введение. На данный момент широко известно, что в жидких кристаллах можно наблюдать различные ориентационные дефекты частично упорядоченного молекулярного поля. Жидкокристаллические структуры с такими дефектами обладают нетривиальными оптическими свойствами, благодаря которым находят самое разнообразное применение в оптике и фотонике. С другой стороны, такие дефекты невозможно получить непрерывным преобразованием ориентационного поля жидкого кристалла, что открывает перспективы использования структур с ориентационными дефектами для записи и хранения информации на молекулярном уровне [1].

Ранее в тонких пленках фрустрированных хиральных нематических жидких кристаллов было продемонстрировано получение различных локализованных статичных дефектных структур путем оптически индуцированной переориентации жидкокристаллических молекул как структурированными, так и Гауссовыми световыми пучками [2, 3]. Недавний подход, основанный на светоиндуцированном управлении холестерической спиралью, позволяет создавать уникальные локализованные динамические вращающиеся структуры и несколько видов различных статических структур с помощью ультрафиолетового Гауссова пучка с мощностью всего в десятки нановатт [4]. Наше исследование направлено на детальное изучение взаимосвязи между ориентационной молекулярной упаковкой и поведением светоиндуцированных локализованных супрамолекулярных структур в тонких пленках фрустрированных хиральных нематиков при варьировании пространственно-временных характеристик Гауссова светового пучка.

Областью наших интересов является создание широкого спектра различных локализованных сложных структур в тонких пленках светочувствительного хирального нематического жидкого кристалла путем оптически индуцированных фотохимических превращений молекул хиральной легирующей добавки. Сфокусированное освещение области фрустрированного хирального жидкого кристалла гауссовым пучком с колоколообразным профилем интенсивности позволяет локально уменьшать шаг спирали хирального нематика и формировать топологически сложные локализованные дефектные статические и динамические структуры. Актуальность наших исследований обусловлена интенсивными научно-техническими разработками в области перестраиваемых дифракционных и геометрических оптических элементов, ячеек оптической памяти, устройств для структурирования световых пучков [5, 6], а также элементов транспортировки микро- и наночастиц [4, 7]. Полученные локализованные распределенные в пространстве двулучепреломляющие статические и динамические структуры могут быть использованы, например, для создания многофункционального материала с произвольным набором микроскопических линз или дефлекторов; в качестве генераторов оптического вихря для структурирования проходящих световых пучков; для создания перспективного материала с пофункционального материала для мягкой роботики.

Экспериментальная часть. Целью данного эксперимента является определение диапазона существования статических локализованных структур в тонких пленках фрустрированного хирального нематического жидкого кристалла. В качестве образца в проведенном исследовании был использован фотопассивный нематический жидкий кристалл Е7, в который были добавлены светочувствительные допанты. Такая легирующая добавка поглощает свет в ближнем ультрафиолетовом диапазоне около 375 нм. При сфокусированном освещении локальной области образца происходит фотохимическая реакция, молекулы изомеризуются, что приводит к уменьшению длины холестерической спирали, жидкий кристалл переходит в скрученное состояние и образуется локализованная структура.

Начальным этапом эксперимента является создание динамической локализованной структуры с помощью неструктурированного Гауссова светового пучка. Затем мощность записывающего пучка каждые 15 минут уменьшается на 1 нВт. Время ожидания 15 минут соответствует времени достижения локализованных дефектных структур равновесного состояния. При прохождении порога мощности записывающего пучка 11 нВт наблюдается постепенное превращение динамической структуры в статическую структуру второго типа. С дальнейшим уменьшением мощности наблюдается уменьшение структуры в размерах и при прохождении порога 7 нВт превращение статической структуры второго типа в статическую структуру первого типа. При достижении мощности записывающего пучка 5 нВт статическая локализованная структура первого типа прекращает свое существование и холестерический нематический жидкий кристалл переходит во фрустрированное состояние, внешний вид которого ничем не отличается от обычного нематического жидкого кристалла.

Результаты. В результате проведенного эксперимента был определен диапазон существования топологически сложных статических локализованных дефектных структур в светочувствительных нематиках в зависимости от мощности записывающего Гауссова светового пучка. Диапазон существования статической структуры первого типа составил от 6 до 7 нВт. Диапазон существования статической структуры первого типа составил от 8 до 11 нВт.

159

Рис. 1. Диапазон существования локализованной структуры при уменьшении мощности записывающего Гауссова пучка

Заключение. В результате проведенных исследований были определены диапазоны существования статических топологически сложных дефектных локализованных структур в светочувствительных нематических жидких кристаллах в зависимости от уменьшения мощности записывающего светового пучка.

- 1. Ackerman, P.J. Two-dimensional skyrmions and other solitonic structures in confinement-frustrated chiral nematics // Physical Review E. 2014. № 9.
- 2. Smalyukh, I.I. Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids // Nature Materials. 2010. № 9. C. 139–145.
- 3. Loussert C. Multiple chiral topological states in liquid crystals from unstructured light beams // Applies Physics Letters. 2014. № 104.
- Orlova T. Revolving supramolecular chiral structures powered by light in nanomotor-doped liquid crystals // Nature Nanotechnology. – 2018. – № 13. – C. 304–308.
- Hess, A.J. Control of Light by Topological Solitons in Soft Chiral Birefringent Media // Physical Review X. - 2020. – № 10.
- Ackerman P.J. Optical generation of crystalline, quasicrystalline, and arbitrary arrays of torons in confined cholesteric liquid crystals for patterning of optical vortices in laser beams // Physical Review E. – 2012. – № 86.
- 7. Evans J.S. Optical generation, templating, and polymerization of three-dimensional arrays of liquid-crystal defects deco-rated by plasmonic nanoparticles // Physical Review E. 2013. № 87.

УДК:621.039.546

ЗАЩИТНОЕ ТІС ПОКРЫТИЕ ДЛЯ ПОГЛОЩАЮЩИХ ЭЛЕМЕНТОВ ИЗ HfH_y

<u>А.В. Пирожков,</u> Н. Курдюмов, Р.Р. Эльман Научный руководитель: доцент, кандидат технических наук Д.В. Сиделёв Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: alpir11260@gmail.com

PROTECTIVE TIC COATING FOR ABSORBING ELEMENTS MADE FROM HfH_x

A.V. Pirozhkov, N. Kurdyumov, R.R. Elman, Scientific supervisor: Associate Professor, PhD D.V. Sidelev National Research Tomsk Polytechnic University, Russia, Tomsk, Lenin Ave., 30, 634050 Email: alpir11260@gmail.com

Abstract. The effect of TiC coating on the hydrogen desorption from HfH_x samples is investigated at high temperatures. The samples were heated to a temperature of 950 °C with a heating rate of 6 °C/min. X-ray diffraction analysis was performed to reveal a decomposition of hafnium hydride to hafnium and hydrogen, then the release of hydrogen from the samples.

Введение. Для современной атомной энергетики, при создании ядерных реакторов нового поколения и эксплуатации действующих, важной задачей является повышение безопасности и ресурса органов, регулирующих работу ядерного реактора. Одним из возможных решений данной задачи является использование новых материалов, используемых в качестве поглощающих элементов нейтронов. Благодаря совокупности физико-химических и механических свойств таким материалом может стать гидрид гафния. Он имеет высокое значение сечения поглощение тепловых нейтронов, коррозионную стойкость, обладает допустимыми механическими свойствами, высокие термические и радиационные стойкости при длительном облучении. Это позволяет рассматривать гидрид гафния в качестве материала для поглощающих элементов (пэлов) нового поколения для реакторов на быстрых нейтронах (типа БН).

Однако при температурах выше 550 °C возможен распад гидрида гафния и последующая десорбция высвободившегося водорода с постепенным снижением доли гидрида в объёме поглощающего элемента. Это может привести к снижению поглощающей способности пэлов. Для предотвращения данного эффекта предлагается использовать защитные покрытия. Среди большего числа покрытий перспективным может быть карбид титана (TiC).

Цель настоящей работы является изучение возможности использования ТіС в качестве защитного покрытия для поглощающих элементов на основе гидрида гафния (HfH_x).

Материалы и методы исследования. В качестве исследуемого материала использовались цилиндры из гидрида гафния (диаметром 10 мм). Для осаждения ТіС покрытий использовалась вакуумная ионно-плазменная установка, оснащённая ионным источником и комплектом магнетронных

распылительных систем с двумя катодами из титана (99,95%) и углерода (МПГ-6) [1]. Исследования по термостимулированной десорбции производились на автоматизированном комплексе по наводораживанию и изучению десорбции водорода из материалов [2]. Нагрев осуществлялся до температуры 950 °C со скоростью 6 °C/мин. Образец выдерживался при данной температуре в течение 20 минут.

Фазовый состав образцов до и после исследований по термостимулированной десорбции определялся исследовался методом рентгеновской дифракции с помощью дифрактометра Shimadzu XRD-7000S с использованием CuKα излучения при 40 кВ и 30 мА.

Результаты и их обсуждение. На рисунке 1 представлена дифрактограмма таблетки из гидрида гафния в исходном состоянии. По результатам рентгеноструктурного анализа полученный образец содержит только фазу гидрида гафния с кубической сингонией. Фазовый состав гидрида близок к фазе HfH_{1.7.}

Рис. 1. Дифрактограмма исходного образца гидрида гафния

Рис. 2. Дифрактограммы образцов гидрида гафния (1) и гидрида гафния с покрытием TiC (2) после наводараживания

Полученные дифрактограммы образцов гидрида гафния (1) и образцов с нанесенным покрытием TiC (2) после процесса наводораживания. Для образцов с покрытием TiC в результате качественного анализа обнаружено три фазы: Hf, TiC и HfH_{1,7}. Для образцов без покрытия обнаружено присутствие лишь двух фаз, а именно: Hf и HfH_{1,7}.

После эксперимента было обнаружено, что структурная целостность образца с ТіС покрытием была нарушена, наблюдались обширные трещины по всей поверхности образца, что продемонстрировано на рисунке 3.

Рис. 3. Изображение образца с покрытием TiC после проведения эксперимента по термостимулированной десорбции водорода

Наиболее вероятно, что выход водорода из образца с покрытием произошёл при его растрескивании, когда сплошность защитного покрытия была нарушена. Требуется проведение дополнительных исследований по поведению образцов из гидрида гафния при высокой температуре.

Выводы. В результате выполненного исследования установлено, что при высокой температуре происходит распад гидрида гафния и последующий выход водорода из материала. В экспериментах по термостимулированной десорбции водорода на поверхности образцов образовались трещины, которые затрудняют объективную оценку защитных свойств покрытия на основе TiC. Надёжно не установлено защитных свойств покрытия из карбида титана на поверхности гидрида гафния.

Исследование выполнено при финансовой поддержке Государственного задания в рамках научного проекта № FSWW-2021-0017.

- Sidelev D.V., Kashkarov E.B., Syrtanov M.S., Krivobokov V.P. Nickel-chromium (Ni-Cr) coatings deposited by magnetron sputtering for accident tolerant nuclear fuel claddings // Surface and Coatings Technology. - 2019. - V. 369. - P. 69-78.
- Lider A., Kudiiarov V., Kashkarov E., Syrtanov M., Murashkina T., Lomygin, A., Sakvin I., Karpov D., Ivanov A. Hydrogen Accumulation and Distribution in Titanium Coatings at Gas-Phase Hydrogenation // Metals. – 2020. – V. 10. – P. 880.

УДК 620.192:534-16:53.887.45

ВЛИЯНИЕ ПРИЛОЖЕННОГО МАГНИТНОГО ПОЛЯ В ДИЭЛЕКТРИЧЕСКИХ СТРУКТУРАХ НА ПАРАМЕТРЫ ЭЛЕКТРОМАГНИТНОГО ОТКЛИКА ПРИ АКУСТИЧЕСКОМ ВОЗБУЖДЕНИИ

Е.К. Помишин

Научный руководитель: профессор, д.ф.-м.н. А.П. Суржиков Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: mailto: Pomishin evgeny@mail.ru

MAGNETIC FIELD INFLUENCE ON ELECTROMAGNETIC RESPONSE PARAMETERS OF DIELECTRIC STRUCTURES UNDER ACOUSTIC EXCITATION

E.K. Pomishin

Scientific supervisor: Prof., Dr. A.P. Surzhikov Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: mailto: Pomishin_evgeny@mail.ru

Abstract. The paper investigates the parameters of the electromagnetic response to a deterministic acoustic excitation of cement-sand and cement-glass samples with inclusions of different materials in a magnetic field and without. The obtained regularities open up the possibility of objective instrumental determination of the magnetizable defects in a controlled dielectric structure.

Введение. В целях техногенной безопасности необходимо периодически проводить неразрушающий контроль бетонных конструкций и других диэлектрических изделий. В настоящее время для тестирования материалов и конструкций используют различные неразрушающие методы контроля. Для этих целей применяют акустические импульсные и акустико-эмиссионные, электрические и электромагнитные, магнитные, рентгеновские, вибро- и ударно-термографические и другие методы.

Каждые в отдельности эти методы могут быть не эффективны при контроле дефектности диэлектрических материалов и их структур. Выявление же дефектности в виде инородных включений и прослоек в диэлектрических структурах имеет большое значение для контроля их действующей механической и электрической прочности. Комплексные методы акустико-электрических преобразований могут являться хорошим способом неразрушающего тестирования дефектных диэлектрических материалов и структур, учитывающим эти особенности.

Экспериментальная часть. В разрабатываемом комплексном методе используются контактное акустическое зондирование и бесконтактный прием электромагнитных сигналов (ЭМС), возникающий при таком воздействии [1, 2]. При разработке этого метода для тестирования наличия диэлектрических дефектов в диэлектрическом материале использовали электрическое поле, которое прикладывали к поверхности исследуемого образца. Тогда для тестирования намагничивающихся твердотельных дефектов наряду с акустическим возбуждением образцов или изделий и регистрацией электромагнитных сигналов было бы целесообразно использовать наложение на контролируемый объект постоянных

магнитных полей. Магнитные поля могут способствовать усилению параметров акустико-электрических преобразований на контактах таких дефектов и диэлектрика. Это может быть обусловлено массовой переориентацией магнитных диполей в магнитном поле [3] и созданием двойных электрических слоев на контакте дефекта и материала образца.

Для проведения экспериментальных исследований акустико-электрических преобразований изготавливались образцы из цементно-песчаной ЦПС и цементно-стекольной смеси ЦСС размером (50×50×100)×10⁻⁹ м³ с размещением в них искусственных твердотельных включений в виде параллелепипеда (рис.1). Для измерения ЭМС боковая поверхность образцов (50×95)×10⁻⁶ м² размечалась на 15 площадок. Ширина измерительных ЭМС площадок определялась размерами лепестка емкостного датчика электромагнитного приемника.

Вводимую в образец остаточную энергию удара можно было регулировать поджатием пружины разгонного устройства. В качестве включений, имитирующих дефект, использовали включения из разных материалов. При этом материалы подбирались так, чтобы их акустический импеданс z и удельное электрическое сопротивление ρ были больше или меньше z_i и ρ_i ЦПС или ЦСС.

Рис. 1. Модельный образец из цементно-песчаной или цементно-стекольной смеси с твердотельным прямоугольным включением с приложением магнитного поля напряженностью H₁ и H₂ к контакту материалов смеси и дефекта

В экспериментах использовали дефекты размерами (10×10×15)×10⁻⁹ м³, оси которых соосны с осями образцов. При этом наибольшие грани дефектов параллельны большим поверхностям модельных образцов. Положение включения в образце контролировалось с помощью цифровой рентгенографии. В процессе проведения экспериментов прикладывали постоянное магнитное поля напряженностью от 0 до 2000 Э. С этой целью использовали постоянные неодим-феррум-боровый (NdFeB) магниты. Более подробно методика измерений описана ранее [2].

Исследовалось влияние магнитных полей на параметры электромагнитных откликов при импульсном акустическом возбуждении образцов из ЦПС и ЦСС с модельными дефектами, обладающими разными магнитными свойствами. В качестве дефектных материалов использовали ферритовый магнит Y30, магнетитовую руду, дюралюминий Д16Т и латунь ЛС59.

Включения, не обладающие магнитными свойствами, не влияют на величину регистрируемого сигнала при магнитном поле, включения из магнетитовой руды позволяет увеличить электрический согнал при внесении электрического поля, наилучший эффект наблюдается при включении в образце 165

магнита. На рисунке 2 представлены электромагнитные сигналы и их спектры при детерминированном акустическом возбуждении образца ЦСС с дефектом из ферритового магнита.

Рис. 2. Электромагнитные сигналы и их спектры при детерминированном акустическом возбуждении образца ЦСС с дефектом из ферритового магнита Y30 размером (10×10×15)×10⁻⁹ м³ без магнитного поля (a, в) и с магнитным полем 2280 Э (б, г)

Заключение. Из рисунка видно, что амплитуда ЭМС и его спектр выше при приложении магнитного поля (а, в) и падает при отсутствии магнитного поля (б, г). Это говорит о возможности определения магнитных свойств дефектов в цементных материалах, а также наличие магнитного поля при работе с магнитными материалами, позволяет увеличить чувствительность обнаружения этих включений.

Настоящая работа выполнена при финансовой поддержке Российского научного фонда, грант 20-79-10156.

- Fursa, T.V., Dann, D.D., Demikhova, A.A. Influence of the surface crack concentration and crack orientation in concrete subjected to a pulsed mechanical action on the electrical response parameters // Technical Physics. -2014. - Vol. 59. - P. 1815-1818.
- Bespal'ko, A.A., Shtirts, V.A., Fedotov, P.I., Chulkov, A.O., Yavorovich, L.V. Modelling of Infrared Glow in Rock Holes // Journal of Nondestructive Evaluation. - 2019. – Vol. 38. – P. 29-30.
- Campbell, P. Permanent Magnet Materials and their Application // Cambridge, UK: Cambridge University Press. – 1994. – P. 207.

УДК 3937

АНДРЕЕВСКИЕ СОСТОЯНИЯ И ТОК В МНОГОТЕРМИНАЛЬНОМ ДЖОЗЕФСОНОВСКОМ КОНТАКТЕ

А.Ф. Посадский

Научный руководитель: с.н.с., к.ф.-м.н. А.Г. Семёнов Московский физико-технический институт (национальный исследовательский университет), Россия, Московская область, г. Долгопрудный, Институтский переулок, д.9, 141701 E-mail: <u>posadskij.af@phystech.edu</u>

ANDREEV BOUND STATES AND CURRENT IN A MULTITERMINAL JOSEPHSON JUNCTION

A.F. Posadsky

Scientific Supervisor: senior scientific researcher, PhD A.G. Semenov Moscow Institute of Physics and Technology, Russia, Moscow region, Dolgoprudny, Institutsky per., 9, 141701 E-mail: posadskij.af@phystech.edu

Abstract. In this study, we consider a multiterminal Josephson junction with a point impurity at the center characterized by a some scattering matrix \hat{S} . The dependence of the Andreev bound states and the current through such a structure on the lengths of the terminals L_i and phase differences of the superconductors ϕ_{ij} is studied. We assume that the order parameter $\Delta(x)$ depends stepwise on the coordinates; all calculations are made in the Andreev approximation. Some analytical results are obtained for an arbitrary number of terminals. A special case of a threeterminal contact is also considered. An analytical expression is found for the continuous spectrum current. The ABS spectrum of such a structure is obtained numerically and it is shown that its structure changes with different types of scattering matrix.

Введение. В 1962 г. Б. Джозефсоном [1] был предсказан эффект бездиссипативного протекания тока через слабую связь между двумя сверхпроводниками в отсутствие напряжения. Это явление и до настоящего момента является основой для множества теоретических и экспериментальных исследований. В последнее время большой интерес вызывают джозефсоновские контакты с большим числом (N > 2) терминалов, созданные на основе нормальных металлов, полупроводников и сверхпроводников. Описание таких систем с помощью методов теоретической физики необходимо для понимания их ключевых свойств: ВАХ, ток-фазовая характеристика и т. п. Впоследствии эти знания могут помочь интеграции подобных структур в приборы (например, квантовые компьютеры или датчики магнитного поля).

Методы исследования. Целью данной работы является изучение свойств многотерминального джозефсоновского контакта в случае произвольных длин терминалов. Мы решаем модельную задачу, в которой считаем, что границы между нормальными областями и сверхпроводящими прозрачные, параметр порядка зависит от координат ступенчато, а в центре находится точечная примесь, описываемая некоторой матрицей рассеяния \hat{S} .

Анализ такой структуры основан на уравнениях Боголюбова-Де Жена (БДЖ) [2]

$$\begin{pmatrix} H_0 + U(\mathbf{r}) & \Delta(\mathbf{r}) \\ \Delta^*(\mathbf{r}) & -(H_0^* + U(\mathbf{r})) \end{pmatrix} \begin{pmatrix} u(\mathbf{r}) \\ v(\mathbf{r}) \end{pmatrix} = E \begin{pmatrix} u(\mathbf{r}) \\ v(\mathbf{r}) \end{pmatrix},$$

которые описывают металл в приближении самосогласованного поля. В такой модели электрический ток через контакт переносится квазичастицами. Он состоит из двух вкладов: вклад андреевских состояний (подщелевой спектр) и вклад непрерывного спектра (надщелевой спектр). Кроме того, расчёты существенно упростились благодаря специальному виду параметризации унитарной матрицы из статьи Р. Dita [3]:

$$\begin{split} r_{11} &= a e^{i \varphi_{11}}, t_{12} = b \sqrt{1 - a^2} e^{i \varphi_{12}}, \\ t_{13} &= \sqrt{(1 - a^2)(1 - b^2)} e^{i \varphi_{13}} \\ r_{22} &= -a b^2 e^{i(2\varphi_{12} - \varphi_{11})} + (1 - b^2) e^{i \varphi_{22}}, \\ t_{23} &= -e^{i \varphi_{13}} b \sqrt{1 - b^2} \left(a e^{i(\varphi_{12} - \varphi_{11})} + e^{i(\varphi_{22} - \varphi_{12})} \right), \\ r_{33} &= e^{2i \varphi_{13}} \left(-a(1 - b^2) e^{-i \varphi_{11}} + b^2 e^{i(\varphi_{22} - \varphi_{12})} \right). \end{split}$$

Результаты. С использованием уравнений БДЖ и формализма матриц рассеяния получены уравнения на коэффициенты при возбуждениях для произвольного числа контактов, рассмотрено уравнение на спектр андреевских состояний и его частный случай при равных длинах, найдено выражение для вклада в ток от состояний непрерывного спектра.

Для большей наглядности результатов проанализирован частный случай трёх терминалов (ранее случай нулевых длин в таком контакте был рассмотрен в статье [4]). С использованием среды Wolfram Mathematica численно получены фазовые спектры такой структуры при различных длинах «колен» (Рис. 1.).

Рис. 1. Графики зависимости энергии от разностей фаз сверхпроводников для чистой (слева) и другой максимально симметричной (справа) матриц рассеяния

Видно, что реализуются, как бесщелевой спектр, так и спектр со щелью. Кроме того, найдено явное выражение для вклада в ток непрерывного спектра. Здесь приведена формула в линейном приближении по коэффициентам прохождения T_{ij} :

$$I_{c,3}^{e} = \frac{2e}{h} \left(\int_{-\infty}^{-\Delta_{0}} + \int_{\Delta_{0}}^{+\infty} \right) |u^{2} - v^{2}|$$

$$\left(T_{23} \frac{\sin(\phi_{23})}{\sin(\alpha_{23})} \frac{D(2\vartheta_{1}) \left(D(\vartheta_{2} + \vartheta_{3} - \alpha_{23}) - D(\vartheta_{2} + \vartheta_{3} + \alpha_{23}) \right)}{D(\vartheta_{1} + \vartheta_{2} + \alpha_{12}) D(\vartheta_{2} + \vartheta_{3} + \alpha_{23}) D(\vartheta_{3} + \vartheta_{1} + \alpha_{31})} \right)$$

$$+ T_{31} \frac{\sin(\phi_{31})}{\sin(\alpha_{31})} \frac{D(2\vartheta_{2}) \left(D(\vartheta_{3} + \vartheta_{1} + \alpha_{31}) - D(\vartheta_{3} + \vartheta_{1} - \alpha_{31}) \right)}{D(\vartheta_{1} + \vartheta_{2} + \alpha_{12}) D(\vartheta_{2} + \vartheta_{3} + \alpha_{23}) D(\vartheta_{3} + \vartheta_{1} + \alpha_{31})} \right) f(E) dE,$$

где $D(\psi) = u^4 + v^4 - 2u^2v^2cos(\psi)$, *и*, *v* – факторы когерентности, ϕ_{ij} – разности фаз сверхпроводников, α_{ij} – эффективные разности фаз, ϑ_i – приведённые фазы, f(E) – распределение Ферми. Следует отметить, что полученные результаты согласуются с более ранними статьями, посвящёнными двух- и трёхтерминальным контактам [4-6].

Заключение. В данной работе изучены свойства андреевских уровней и постановка задачи расссеяния для многотерминальных джозефсоновских контактов. С помощью уравнений БДЖ и формализма матриц рассеяния получены некоторые аналитические результаты при произвольном числе контактов, а также рассмотрена задача в частном случае трёх терминалов, численно найдена зависимость энергии андреевских состояний от длин и разностей фаз. Работа мотивирована тем, что довольно часто в исследованиях, посвящённых эффекту Джозефсона ограничиваются случаем, когда длины терминалов малы и, соответственно, доминирующий вклад дают только андреевские уровни, а непрерывный спектр можно не рассматривать. В случае же больших длин это утверждение неверно, и потому необходимо понять зависимость тока Джозефсона именно от размеров нормальных областей.

Автор выражает благодарность своему научному руководителю к.ф.-м.н. Семёнову Андрею Георгиевичу за помощь в координации работы, дельные советы и обсуждения данной задачи, а также всем, кто сколь-нибудь помогал в процессе.

- 1. Josephson B.D. Possible new effects in superconductive tunnelling // Phys. Lett. -1962.- V. 1. P. 251
- 2. П. Де Жен. Сверхпроводимость металлов и сплавов, Москва, Мир, 1968. 143 с.
- 3. Dita P. Parametrisation of unitary matrices. // J. Phys. A: Math. Gen., -1982. V. 15 P. 3465
- Hong-Yi Xie, Vavilov M.G., Levchenko A. Topological Andreev bands in three-terminal Josephson junctions. // Phys. Rev. B. –2017. – V. 96. P. 161406-1.
- 5. Li-Fu Chang, Bagwell P.F. Ballistic Josephson-current flow through an asymmetric superconductor normal-metal superconductor junction // Phys. Rev. B. –1994.– V. 49. P. 15853
- Bagwell P.F. Suppression of the Josephson current through a narrow, mesoscopic, semiconductor channel by a single impurity. // Phys. Rev. B. –1992. – V. 46. P. 12573

УДК 53.083.9

EVALUATION OF THE EFFECTS OF BIOLOGICAL AND PHYSICAL OPTIMIZATION FUNCTIONS ON THE QUALITY OF RADIATION THERAPY PLANS WITH SIMULTANEOUS DOSE ESCALATION FOR PROSTATE TUMORS

<u>E.A. Selikhova</u>, Ya.N. Sutygina Scientific Supervisor: Prof., Dr. E.S. Sukhikh Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: <u>eas76@tpu.ru</u>

ОЦЕНКА ВЛИЯНИЯ БИОЛОГИЧЕСКИХ И ФИЗИЧЕСКИХ ФУНКЦИЙ ОПТИМИЗАЦИИ НА КАЧЕСТВО ПЛАНОВ ЛУЧЕВОЙ ТЕРАПИИ С ОДНОВРЕМЕННОЙ ЭСКАЛАЦИЕЙ ДОЗЫ ОПУХОЛЕЙ ПРЕДСТАТЕЛЬНОЙ ЖЕЛЕЗЫ

Е.А. Селихова, Я.Н. Сутыгина

Научный руководитель: доцент, д.ф.-м.н. Е.С. Сухих Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>eas76@tpu.ru</u>

Аннотация. Целью данной работы является исследование и оценка влияния биологических и физических функций оптимизации на качество планов лучевой терапии с одновременной эскалацией дозы опухолей предстательной железы. В рамках данного исследования были рассмотрены дозиметрические планы 9 пациентов с диагнозом рак предстательной железы. Терапевтические планы созданы на основе дозиметрических критериев для каждого клинического случая с разными функциями оптимизации: физические, биологические, комбинация физических и биологических функций.

Introduction. One of the most high-tech modern ways to treat cancer patients is radiation therapy (RT). The main task of radiation therapy is the exact delivery of the radiation dose to the tumor with the minimal possible radiation exposure to the surrounding healthy organs and tissues. Over the past few decades, radiation therapy has seen technical progress in treatment aspects and dose delivery technologies, allowing a transition from 3-dimensional conformal radiotherapy (3D-CRT) to intensity modulated radiation therapy (IMRT) [1]. Inverse (reverse) planning is used when developing a dosimetric plan for intensity modulated radiotherapy. The radiation therapy planning system (TPS) optimizes the dosimetric plans by means of optimization functions, simulating different tissue types and regulating the value of the radiation response. The optimization functions, in turn, are divided into biological and physical [2]. To achieve maximal therapeutic effect with minimal radiation exposure to normal organs and tissues in inverse radiation therapy planning it is necessary to determine not only optimal physical and technical parameters of irradiation (the number of beams, the gantry angle, the collimator angle, etc.), but also optimal combinations of optimization weight functions [3].

The purpose of this work is to research and evaluate the effects of biological and physical optimization functions on the quality of radiation therapy plans with simultaneous dose escalation for prostate tumors.

Research methods. Based on the anatomical data of nine patients diagnosed with prostate cancer who were treated at Tomsk Regional Oncologic Dispensary, plans of radiation therapy with volumetric modulated arc therapy (VMAT) were developed. All the patients underwent topometric preparation in the treatment position on a Toshiba Aquilion spiral CT scanner (Toshiba, Japan) with a slice thickness of 3 mm, using appropriate external immobilizing devices.

A procedure for delineation of the organs at risk (OAR) and planned target volumes (PTV) was performed, where PTV1 represents the prostate region, PTV2 is the prostate and seminal vesicles, and PTV3 is the prostate, seminal vesicles, and regional lymph nodes. The following critical structures were identified: bladder, rectum, and femoral heads. The prescribed dose per course of radiation therapy with simultaneous dose escalation SIB (Simultaneous integrated boost) was 75 Gy, which was delivered in 25 fractions, thus the single focal dose varied for PTV1-3 Gy, for PTV2 -2.5 Gy, and for PTV3 -2 Gy.

Dosimetric planning for simultaneous integrated SIB dose escalation was performed in the Monaco environment (version 5.51.10) using volumetric intensity modulation VMAT for photon beams of the Elekta Synergy high-energy linear accelerator at the Tomsk Regional Oncologic Dispensary. All the dosimetric irradiation plans had the same technical calculation parameters: 10 MV photon radiation energy, VMAT irradiation technique with two full arches (0-360°), the calculation grid size was 0.3 cm, the maximum bimlet width was 0.2 cm, the maximum segment width was 1 cm (the maximum distance between opposite MLC leafs), the collimator angles for the first arc were 10° for the second arc 315°, the dose calculation was performed in the environment using the Monte Carlo algorithm for photon beams, the statistical uncertainty of the calculation was 0.8%.

In order to determine the influence of biological and physical optimization functions on the quality of radiation therapy plans with simultaneous dose escalation for prostate tumors, several therapeutic plans with different optimization functions were created for each clinical case based on dosimetric criteria: physical; biological; a combination of physical and biological functions. The dosimetric plans with biological optimization functions were used as follows: Target EUD, Serial, and Parallel. For dosimetric planning with physical optimization functions the following were used: Target Penalty, Quadratic Overdose, and a combination of these optimization functions.

Quality evaluation of the dosimetric radiation plans was based on the recommendations and protocols to predict radiation damage and select optimal dose distributions for each patient. Treatment plans were considered acceptable if the prescribed dose was greater than 95% of the volume of each treatment site (prostate, seminal vesicles, and pelvic lymph nodes). A maximum dose of 107% of the prescribed dose was allowed for <2% of prostate PTV. For OAR, dose limits were: for rectum: V74 \leq 15%; V69 \leq 20%; V64 \leq 25%; V59 \leq 35%; for bladder: V74 \leq 25%; V69 \leq 35%; V64 \leq 50%; for femoral heads: V45 <10%. Three-dimensional dosimetric assessment of exposure plans was performed using dose-volume histograms (DVH) for target and risk organs, and conformal index (CI) and homogeneity index (HI) dose distribution for target coverage was assessed for each case.

Results. The dosimetric VMAT-SIB radiotherapy plans developed using biological, physical optimization functions and their combination were clinically acceptable in terms of target volume coverage and dose exposure to the organs at risk. The dose distribution in the clinical target volume for all VMAT-SIB plans was in the range of at least 95% of the prescribed dose covered at least 95% of the target volume. Radiation exposure levels to critical organs did not exceed tolerated levels, recalculated with consideration of fractionation

mode and radiobiological parameters. The result of absorbed dose distribution in the pelvic region using biological optimization functions obtained for one patient is shown in Figure 1.

Fig. 1. Distribution of absorbed dose in the pelvic region using biological optimization functions

Figure 2 shows the results of comparing the DVHs for the irradiation target and critical organs using biological and physical optimization functions.

Fig. 2. Results of the comparison of DVHs for target radiation and critical organs using biological and physical optimization functions (— physical functions; ----- biological optimization functions)

In dosimetric intensity-modulated radiotherapy planning using only biological optimization functions, critical organs receive a lower dose relative to the plan where only physical functions were used. With biological optimization functions, the volume of the rectum that receives a 40 Gy dose is reduced by 25% ($V_{40 \text{ physical}} = 82\%$; $V_{40 \text{ biological}} = 57\%$). However, the conformality index is 3% higher for the planned PTV1 target volume when using only the physical optimization functions compared to the plan where only the biological optimization functions were used ($CI_{physical} = 0.988$; $CI_{biological} = 0.956$).

Conclusion. In dosimetric planning, optimization functions and their combinations should be carefully selected. The dose distribution results have shown that it is possible to create clinically acceptable dosimetric plans when only biological or physical optimization functions are used separately. However, the most optimal dosimetric plan is achieved by using a combination of biological and physical optimization functions.

REFERENCES

- Wu, Q., Mohan, R. Algorithms and functionality of an intensity modulated radiotherapy optimization system [Electronic version] // Journal of Medical Physics. – 2000. – No. 27. – P. 11–701.
- Allen, Li X., Alber, M., Deasy, J. O., Jackson, A., Ken Jee, K. W., Marks, L. B., *et al.* The use and QA of biologically related models for treatment planning: Short report of the TG-166 of the therapy physics committee of the AAPM [Electronic version] // Journal of Medical Physics. 2012. – No. 39. – P. 409–1386.
- Senthilkumar, K., Maria Das, K. J. (2019). Comparison of biological-based and dose volume-based intensity-modulated radiotherapy plans generated using the same treatment planning system [Electronic version] // Journal of Cancer Research and Therapeutics. – 2019. – No. 15.– P. 8–33.

УДК 621.793.182

КОРРОЗИОННЫЕ СВОЙСТВА ХРОМОВЫХ ПОКРЫТИЙ: РОЛЬ ПЛАЗМЕННОГО АССИСТИРОВАНИЯ ПРИ МАГНЕТРОННОМ РАСПЫЛЕНИИ

<u>Д.В. Сиделёв</u>, В.А. Грудинин, К.А. Алкенова Научный руководитель: доцент, к.т.н. Д.В. Сиделёв Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: sidelevdv@tpu.ru

CORROSION PROPERTIES OF CHROMIUM COATINGS: EFFECT OF PLASMA ASSISTANCE FOR MAGNETRON SPUTTERING

D.V. Sidelev, V.A. Grudinin, K.A. Alkenova Scientific Supervisor: Assistant Professor, PhD D.V. Sidelev Tomsk Polytechnic University, Russia, Tomsk, Lenin av., 30, 634050 E-mail: sidelevdv@tpu.ru

Abstract. This paper describes an effect of plasma assistance on corrosion properties of chromium coatings obtained by magnetron sputtering. It was found that plasma assistance results in 2-5 times increase in polarization resistance depending on the type of sputtering target. The most pronounced effect of plasma assistance is observed for high-rate coating deposition using magnetron sputtering with a "hot" target.

Введение. Широко распространённым методом осаждения защитных хромовых покрытий является химическая технология (хромирование), однако, постепенно происходит отказ от технологий хромирования изделий из-за чрезвычайной высокой токсичности участвующих в процессе осаждения соединений [1]. Одним из наиболее перспективных альтернативных методов осаждения хромовых покрытий является магнетронное распыление. Преимуществами данного метода является экологичность, высокие плотность покрытий и адгезионная прочность. Однако, в сравнении с химической технологией, магнетронное распыление значительно уступает в производительности процесса осаждения. Одним из подходов, позволяющих значительно увеличить (вплоть до одного порядка величины) скорость осаждения покрытий, является использование сублимирующей («горячей») хромовой мишени. В таком случае, дополнительно к процессу распыления мишени происходит сублимация её поверхности. Перспективность такого подхода в целях увеличения производительности осаждения уже была показана в ряде публикаций [2-4]. Однако, применение «горячей» Сг мишени, как правило, приводит к ухудшению функциональных свойств покрытий, в том числе и к коррозионной стойкости. Основная причина снижения параметров свойств покрытий состоит в том, что дополнительный поток атомов за счёт сублимации имеет низкую кинетическую энергий (менее 0,3 эВ) в сравнении с распылёнными атомами. Возможным решением может быть применение плазменного ассистирования процессу магнетронного распыления дополнительным внешним источникам, которое позволяет увеличить плотность ионного тока, поступающего на подложку, и, таким образом, регулировать свойства покрытий [5-7]. Например,

применение высокочастотного источника индуктивно-связанной плазмы в процессе магнетронного распыления [7].

Цель настоящей работы состоит в исследовании влияния плазменного ассистирования на коррозионную стойкость хромовых покрытий, полученных при помощи магнетронного распыления.

Экспериментальная часть. В качестве подложек для исследования коррозионной стойкости хромовых покрытий использовалась сталь марки 12x18н10т. Схема осаждения покрытий подробно рассматривается в работе [8]. В эксперименте использовались две конструкции магнетронной распылительной системы (MPC): с «горячей» и охлаждаемой мишенью. Остаточное давление в вакуумной камере составляло $5 \cdot 10^{-3}$ Па, а рабочее давление – $3 \cdot 10^{-1}$ Па. Плотность мощности при осаждении покрытий была равна 15,7 Вт/см² и была подобрана таким образом, чтобы плотность потока сублимированных частиц в случае распыления «горячей» мишени была соразмерна распылённому потоку. Время осаждения покрытий была равна 2,4±0,2 мкм. В качестве дополнительного внешнего плазменного источника использовался радиочастотный плазменный генератор РПГ-128 (ООО «Лаборатория плазменных технологий плюс», г. Зеленоград, Россия), подключенный к источнику питания СОМDEL СХ1250 с частотой 13,56 МГц. Мощность РПГ-128 во всех экспериментах - 500 Вт.

Для исследования коррозионной стойкости покрытий применялся метод потенциодинамической поляризации в растворе 3,5 масс.% NaCl, упрощённо имитирующий условия морской воды. Испытания осуществлялись при использовании потенциостата-гальваностата P-45X (Electrochemical Instruments, г. Черноголовка, Россия) в классической трёхэлектродной электрохимической ячейке. В качестве электрода сравнения использовался Ag/AgCl электрод. Противоэлектродом выступал графитовый стержень. Перед проведением основного испытания поверхность испытуемого образца выдерживалась в электролите при потенциале разомкнутой цепи в течение 2000 секунд для компенсации зарядов.

Результаты исследований. На рисунке 1 представлены результаты проведения коррозионных испытаний для хромовых покрытий, полученных при магнетронном распылении охлаждаемой и «горячей» мишеней в присутствии/отсутствии ассистирования РПГ-128.

Рис. 1. Потенциодинамические кривые, полученных для Cr покрытий в зависимости от конфигурации мишени и плазменного ассистирования

Полученные потенциодинамические кривые были проанализированы методом Штерна-Гири, исходя из которых, получены значения сопротивления поляризации полученных покрытий (таблица 1).

Россия, Томск, 26-29 апреля 2022 г.

Таблица 1

Образец	<i>U</i> , B	<i>j</i> , ·10 ⁻⁹ А/см ²	R_p , MOM·cm ²
«горячая» + РПГ-128	-223,5	3,6	10,7
холодная + РПГ-128	-358,9	17,7	11,1
«горячая» без РПГ-128	-324,9	24,5	2,3
холодная без РПГ-128	-233,8	27,5	5,9

Электрохимические параметры полученных покрытий

Таким образом, покрытия, полученные в условиях плазменного ассистирования, показали наилучшее сопротивление коррозии, как в случае распыления «горячей», так и охлаждаемой мишени. Без плазменного ассистирования наблюдается значительная разница в сопротивлении поляризации для хромовых покрытий (в 2,6 раз), что указывает на значимую роль применения РПГ-128 для модификации коррозионных свойств осаждаемых покрытий.

Заключение. Выявлено, что плазменное ассистирование приводит к увеличению сопротивления поляризации в 2-5 раз в зависимости от типа применяемой мишени. Более значимый эффект наблюдается в случае «горячей» мишени, когда скорость осаждения выше. Были выявлено, что наиболее высокую коррозионную стойкость в растворе 3,5 масс.% NaCl имеют именно такие покрытия, что подтверждает перспективность и применимость данного подхода для компенсации ухудшения функциональных характеристик покрытий, полученных при магнетронном распылении «горячей» мишени.

Исследование выполнено в рамках выполнения гранта Президента РФ (проект № МК-3570.2022.4).

- 1. Miretzky P. et al. Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review // Journal of Hazardous Materials. 2010. Vol. 180, iss 1-5. pp. 1-19.
- Sidelev D.V. et al. High-rate magnetron sputtering with hot target // Surface and Coatings Technology. 2010. – Vol. 308. – pp. 168-173.
- Mercs D. et al. Hot target sputtering: a new way for high-rate deposition of stoichiometric ceramic films // Surface and Coatings Technology. – 2006. – Vol. 301. – pp. 2276-2281.
- Billard A. et al. Influence of the target temperature on a reactive sputtering process // Surface and Coatings Technology. – 1999. – Vol. 116-119. – pp. 721-726.
- Voevodin A.A. et al. Wear resistant composite coatings deposited by electron enhanced closed field unbalanced magnetron sputtering // Surface and Coatings Technology. – 1995. – Vol. 73. – pp. 185-197.
- 6. Zhen He et al. Effect of bias on structure mechanical properties and corrosion resistance of TiN_x films prepared by ion source assisted magnetron sputtering // Thin Solid Films. 2019. Vol. 676. pp. 60-67.
- V. Stranak et al. Highly ionized physical vapor deposition plasma source working at very low pressure // Applied Physics Letters. – 2012. – Vol. 100. – article number 141604.
- Grudinin V.A. et al. Hot target magnetron sputtering enhanced by RF-ICP source for CrN_x coatings deposition // Vacuum. – 2021. – Vol. 191. – article number 110400.

УДК 621.039.517.5

SIMULATION OF THERMOPHYSICAL PROCESSES OF THE FUEL ASSEMBLY OF THE IRT-T REACTOR AT A POWER OF 10 MW

A.A. Solomatin

Scientific Supervisor: Associate Professor, Ph.D. A.G. Naimushin Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: aas230@tpu.ru

МОДЕЛИРОВАНИЕ ТЕПЛОФИЗИЧЕСКИХ ПРОЦЕССОВ ТОПЛИВНОЙ СБОРКИ РЕАКТОРА ИРТ-Т НА МОЩНОСТИ 10 МВТ

А.А. Соломатин

Научный руководитель: доцент, к.ф.-м.н. А.Г. Наймушин Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: aas230@tpu.ru

Аннотация. В работе рассматривается поведение материалов активной зоны исследовательского реактора ИРТ-Т при повышении его тепловой мощности с 6 до 10 МВт. Исследованы параметры ядерного топлива и его оболочки с точки зрения изменения нейтронных и тепловых полей. Работа включает в себя компьютерное моделирование с использованием программ для симуляции потока теплоносителя (САПР Solidworks) и симуляции нейтронной физики реактора ИРТ-Т (MCU-PTR).

Introduction. Research nuclear reactors are most often installations that have been modernized several times over their rather long existence. This situation has developed due to the uniqueness of the objects, their properties and capabilities. However, despite the accumulated experience in improving research nuclear reactors, there is a problem of the applicability of existing methods for separately selected facilities. In particular, it is planned to modernize the IRT-T reactor in terms of thermal power from 6 to 10 MW. Such large projects should be checked from a variety of viewpoints, including operability in the new planned conditions of existing control and safety systems.

Research methods. Recently, industrial simulation methods have been actively used to check thermal parameters. One of the most suitable software environments for the purposes of the work was Solidworks CAD. In this software package, a model of the IRT-3M side fuel assembly (FA) with simulators was created and subsequently verified by the coolant velocities in each of the gaps between the fuel elements and the pressure drop across the entire FA according to the article [1]. Since it was not possible to take into account the complex flows and stagnant areas, as well as correct turbulence, the virtual assembly was verified in a combined way: in terms of velocities and total pressure drop. This approach implies the assembly simulation in a differential form and in an integral form.

Differential calculus includes splitting the water flow in the assembly separately for each gap so that it is possible, by changing the boundary conditions (the pressure drop), to adjust the flow rate corresponding to the actual one from [1]. The total pressure drop was also calculated separately for each gap. For simplicity, the upper

and lower limit switches are disabled in the model. Integral calculus implies the standard setting of the boundary conditions for the entire assembly as a whole with the addition of similar [1] imitators to the model for a more correct simulation of the coolant outflow in the extreme gaps.

The MCU-PTR software was used to determine the maximum power release. The standard model of the IRT-T reactor in the MCU consists of 1479 materials and 4014 zones, out of which 120 materials define the fuel matrix of all fuel assemblies, 1018 materials define the biological protection, 50 materials define the area of the HEC-1 and HEC-4 channels, 259 materials define the central and side beryllium reflectors, and the rest are responsible for the control rods, as well as for the aluminum shells and the remaining experimental channels. The fuel matrix of each fuel assembly in the model was divided into 6 layers to allow tracking the altitude component of the flow. The calculation was carried out for 50 series of 50 independent generations with 3000 neutrons in each one, which according to [2] gives a fairly accurate result for a research reactor.

Results. The thermal correspondence of the model to the real fuel assemblies was established according to the data from the reactor plant, namely, the coolant heating. In the real case, the heating was 7.27 °C, in the model with an average energy release - 6.16 °C, which indicates the influence of neighboring assemblies on the water temperature. Nevertheless, the obtained results are sufficient for conducting a study at an increased power of IRT-T.

The calculation showed that for a 10 MW reactor for IRT-3M with an average energy release of 500 kW, the heating of the coolant was 11.87 °C, and for a maximum of 659.69 kW – 15.41 °C. The maximum water temperature did not exceed 88.92 °C. Figure 1 shows the calculation results for the assembly with the maximum energy release. These data indicate a significant excess of the established conditions for the operation of emergency protection – 10 °C. To eliminate this problem, the following three actions are proposed: changing the settings for emergency operation; an increase in coolant consumption; and reduction of the reactor power to the requirements of emergency safety.

Fig. 1. Temperature distribution in IRT-3M for power generation of 659.69 kW: a) – at inlet of the FA; b) – at outlet of the FA

177

Figure 2 shows the distribution of maximum temperatures for the most heated segment of the maximum loaded FA in the radial direction (from the center to the edge). In accordance with [2], an increased energy density is observed in the central and outer fuel elements, which is the main factor of the increase in temperatures in the gaps of the center and edge of the fuel assembly. A relative increase in the maximum heating of the coolant in the most stressed areas is noted.

Fig. 2. Maximal temperature of the coolant for FA with maximal heat releases for 6 and 10 MW reactor by the radius of the FA

Conclusion. The calculation of the FA thermal parameters showed that an increase in the IRT-T power from 6 to 10 MW with the current reactor configuration can lead to an excess of the existing trip set point for the coolant heating at its maximum, more than 54%. In this regard, several options have been proposed to solve this problem. If the reduction of the reactor power to the requirements of emergency safety option is chosen, the reactor will be able to be powered up to a maximum of 8 MW, it will not be necessary to upgrade any of the existing systems, however, the neutron fluxes will be lower than the fluxes at a power of 10 MW. Also, this calculation shows that the reactor has a significant margin to maintain thermal power in the event of a large-scale contamination in the cooling system, including heat exchangers.

REFERENCES

- Nasonov V.A. [et. al]. Determination of water velocity in the gaps of fuel assemblies IRT-3M, -4M // Atomnaya Energiya. – 2011. – V. 110, №6. – P. 317-321.
- Gurevich, M.I., Shkarovskii, D.A. Raschet perenosa nejtronov metodom Monte-Karlo po programme MCU [Calculation of neutron transfer by the Monte-Carlo method using the MCU program]. – Moscow, NRNU MEPhI Publ., 2012. – 154 p.
- Chertkov, Yu. B., Ivanov, A. A., Naimushin, A. G. Temperaturnye rezhimy raboty tvelov reaktora IRT-T [Temperature regimes of operation of fuel elements of the IRT-T reactor] // Bulletin of the Tomsk Polytechnic University. Georesource engineering, – 2010. V. 316, №. 4. – P. 19-22.

УДК 538.971

МЕХАНИЗМЫ АНТИБАКТЕРИАЛЬНОЙ АКТИВНОСТИ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ НА ПРИМЕРЕ МНОГОСТЕННЫХ УГЛЕРОДНЫХ НАНОТРУБОК

<u>А.В. Степанов</u>, А.П. Попов, Д.С. Юманов Научный руководитель: к.в.н. А.И. Димитриева Чувашский государственный аграрный университет, Россия, г. Чебоксары, ул. К, Маркса, 29, 428003 E-mail: for.anton_step@mail.ru

MECHANISMS OF ANTIBACTERIAL ACTIVITY OF CARBON NANOMATERIALS ON THE EXAMPLE OF MULTI-WALLED CARBON NANOTUBES

<u>A.V. Stepanov</u>, A.P. Popov, D.S. Yumanov Scientific Supervisor: PhD. A.I. Dimitrieva Chuvash State Agrarian University, Russia, Cheboksary, K. Marx str., 29, 428003 E-mail: for.anton_step@mail.ru

Abstract. The present study shows that the mechanism of antibacterial activity of nanotubes is determined by oxidative stress and the ability of bacteria to draw nanotubes into the cell. At the same time, it was shown that nanotubes irradiated with ions have a greater antibacterial activity due to a reduced diameter and a more defective structure containing –CO, -OH, -COOH groups.

Введение. В будущем МУНТ могут быть использованы в качестве многофункциональных наноинструментов для медицинских и диагностических целей. В 2013 году Olive и др. [1] исследовали антимикробные нанотрубок возможные свойства углеродных в отношении различных грамотрицательных бактерий, таких как Pseudomona aeruginosa, грамположительных Staphylococcus aureus и условно- патогенных грибков Candida albicans . В результате была обнаружена высокая антимикробная активность в их способности захватывать и улавливать микробные клетки в своих сетях, подвергая микробные колонии высокому уровню окислительного стресса, вызывая гибель микробных клеток [18]. Однако антимикробный эффект УНТ контролируется разнообразием типов бактериальных клеток с точки зрения концентрации, длины, интенсивности, диаметра и агрегации. Клеточная стенка и мембрана микроорганизма повреждаются УНТ. Кроме того, нанотрубки способны подвергать клетку окислительному стрессу, что приводит к ее гибели. Помимо вредного воздействия загрязнения воздуха и воды , многие микроорганизмы, особенно E.coli (грамотрицательные бактерии) и S.aureus (граммположительные бактерии), вызывают катастрофические заболевания человека. Антибактериальные препараты, такие как антибиотики и химиотерапевтические препараты, считаются обычными методами лечения таких заболеваний. Однако в результате чрезмерного и неправильного использования антибиотиков микробные инфекции выработали устойчивость к основным противомикробным препаратам, что повышает опасность для здоровья. Следовательно, для решения этой проблемы необходимо внедрить надежные и здоровые альтернативные решения. Из-за их низкой стоимости и массового производства в текущем исследовании будут использоваться MWNT, а не SWNT.

В последнее время интенсивно исследуются различные наноструктурированные материалы на предмет их способности успешно предотвращать рост бактерий. Сообщается о влиянии собственных дефектов и ионного облучения на антибактериальную активность многослойных углеродных нанотрубок (МУНТ) в отношении Escherichia coli (E.coli). В данной работе экспериментально и с использованием вычислительного эксперимента исследованы механизмы антибактериальной активности образцов МУНТ. Основными механизмами антибактериальной активности по мнению авторов [2-6] являются

1) Закрепление наночастиц на клеточных стенках бактерий и проникновение в организм, затем диффузия наночастиц и выделений активных цитоплазматических мембран с последующим их распространением внутрь клетки

2) Разрушение бактериальной клеточной клетчатки за счет окислительного стресса при наличии на поверхности наночастиц групп – OH, -COOH

Экспериментальная часть. Метод химического осаждения из паровой фазы (CVD) был использован для синтеза МУНТ [43]. Наша система синтеза состоит из цифровой печи с контролем температуры. N₂ в качестве газа-носителя с раствором ферроцена, растворенным в циклогексане, подают для выращивания нанотрубок на кремниевой подложке. Были приготовлены три разных образца МУНТ для исследования влияния структуры на их антибактериальную эффективность. Трубки в первом образце, C-MWNT обладают более кристаллической структурой, чем во втором, D-MWNT. Третий образец, R-MWNT, подвергшийся ионному облучению, имеет особую морфологию. Значительно уменьшился диаметр трубки для R-MWNT, за которым последовала более короткая длина трубки по сравнению с другими образцами. Уменьшение диаметра трубок может происходит вследствие нагрева при ионном облучении.

Для экспериментального исследования механизма антибактериальной активности образцов 1-3 исследовали изменения роста бактерий Е. Coli M-17. Исследовали культуры *E.coli*, первый образец – контрольный, остальные – образцы Р-МУНТ и Д-МУНТ с предыдущими дозами. Аликвоты по 1 мл из растворов отбирали каждые 0,5 ч и тестировали для оптических измерений. Рост клеток рассчитывали с помощью спектрофотометра UV/VIS с длиной волны 600 нм. Затем строили график зависимости количества бактерий от времени для получения кривой роста *E.coli*.

Для проверки молекулярного строения облученных нанотрубок и их взаимодействия с клеточной мембраной был проведен вычислительный эксперимент. Моделирование классической молекулярной динамики выполняется с использованием кода LAMMPS [7]. Используются периодические граничные условия для ячейки моделирования. Сначала было смоделировано облучение ионами Ar⁺, затем взаимодействие облученной нанотрубки с атмосферным воздухом, водяными парами с образованием - CO, -OH, -COOH групп. После этого моделировалось воздействие полученных наночастиц с клеточной мембраной бактерии.

Результаты. Характеристическая кривая роста для *E. coli* была получена для водных дисперсий D-MWNT и R-MWNT с желаемыми дозировками (0,1, 0,2, 0,3, 0,4 и 0,5 мг/мл), взвешенных по сравнению с контролем. Получено, что при увеличении массы МУНТ до 0,4 мг/мл кривые роста неуклонно снижались. Наши исследования показали, что оптимизированная доза МУНТ, обеспечивающая минимальное ингибирование, составляет (0,4 мг/мл) для обоих образцов с процентом ингибирования 92,5% для R-MWNT и 67,7% для D-MWNT.
В результате моделирования было показано, что степень дефектности возросла у облученных МУНТ в два раза по сравнению с необлученными МУНТ, что согласуется с экспериментальными данными, полученными методом спектроскопии комбинационного рассеяния.

Заключение. Наше исследование показало, что дефекты, вызванные ионным облучением, усиливают антимикробную активность по сравнению с выращенными образцами D-MWNT . R-MWNT были протестированы на бактерицидную активность на культурах *E.coli*. Облученные ионами нанотрубки взаимодействуют со структурными изменениями, вызванными бактериями, и клеточной гибелью. МУНТ разрушает бактериальную стенку за счет окислительного стресса, а также молекулярного механизма питания за счет более быстрого проникновения наночастиц в просвет клетки через мембрану.

Работа выполнена с использованием оборудования Центра коллективного пользования сверхвысокопроизводительными вычислительными ресурсами МГУ имени М.В. Ломоносова [8]. Работа выполнена с использованием Центра коллективного пользования Чувашского ГАУ.

СПИСОК ЛИТЕРАТУРЫ

- Olivi M., Zanni E., DeBellis G., Talora C., Sarto M.S., Palleschi C., Flahaut E., Monthioux M., Rapino S., Uccelletti D., Fiorito S. Inhibition of microbial growth by carbon nanotube networks // Nanoscale. – 2013 – Vol. 5(19). – P. 9023-9029.
- Singh R., Smitha M.S., Singh S.P. The role of nanotechnology in combating multi-drug resistant bacteria // J. Nanosci Nanotechnol. – 2014 – 14(7). – P.4745-4756.
- Rajabathar, J.R. Periyasami, G. Alanazi, A.M. Govindasamy, M. Arunachalam, P. Review on Carbon Nanotube Varieties for Healthcare Application: Effect of Preparation Methods and Mechanism Insight // Processes. – 2020. – 8. – P. 1654.
- Gabrielyan, L., Badalyan, H., Gevorgyan, V. et al. Comparable antibacterial effects and action mechanisms of silver and iron oxide nanoparticles on Escherichia coli and Salmonella typhimurium // Sci Rep. –2020 – Vol. 10 – P. 13145.
- Slavin, Y.N., Asnis, J., Häfeli, U.O. et al. Metal nanoparticles: understanding the mechanisms behind antibacterial activity // J Nanobiotechnol. – 2017 – Vol. 15. – P. 65.
- Díez-Pascual A.M. State of the Art in the Antibacterial and Antiviral Applications of Carbon-Based Polymeric Nanocomposites // Int J. Mol Sci. – 2021 – Vol. 22(19) – P. 10511.
- Plimpton S. 1995 Fast Parallel Algorithms for Short-Range Molecular Dynamics // Journal of Computational Physics. – 1995. – Vol. 117. – P. 1-19.
- Voevodin V.I., Antonov A., Nikitenko D., Shvets P., Sobolev S., Sidorov I., Stefanov K., Voevodin Vad., Zhumatiy S. Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community // Supercomputing Frontiers and Innovations. – 2019 – Vol.6, No.2 – P.4

Том 1. Физика

Россия, Томск, 26-29 апреля 2022 г.

УДК 538.915

ОСОБЕННОСТИ ЗОННОЙ СТРУКТУРЫ И СПИНОВОЙ ПОЛЯРИЗАЦИИ В ПОВЕРХНОСТНОМ СПЛАВЕ Ag₂-Sb НА ПОВЕРХНОСТИ Ag(4 2 3)

Д.В. Терентьева

Научный руководитель: к.ф.-м.н., Л.А. Святкин Национальный исследовательский Томский политехнический университет, Россия, г.Томск, пр. Ленина, 30, 634050 E-mail: <u>dvt17@tpu.ru</u>

FEATURES OF THE BAND STRUCTURE AND SPIN POLARIZATION IN Ag₂-Sb SURFACE ALLOY ON Ag(4 2 3) SURFACE

D.V. Terentyeva

Scientific Supervisor: Ph.D., L.A. Svyatkin Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: <u>dvt17@tpu.ru</u>

Abstract. The first-principle calculations have been performed to investigate surface electron states of the surface alloys $SbAg_2(1 \ 1 \ 1)$ and $SbAg_2(4 \ 2 \ 3)$. Orbital decomposition p_x , p_y and spin texture are presented for both systems. The weak spin splitting was revealed for both systems. It is established the presence of the potential well along the step direction of $SbAg_2(4 \ 2 \ 3)$ system. The strong diffusion of surface electron p_x and p_y states is established for the $SbAg_2(4 \ 2 \ 3)$ system. It is noticed spin rotating effect for the $SbAg_2(1 \ 1 \ 1)$ system, however for the $SbAg_2(4 \ 2 \ 3)$ system s_x , s_y spin projections along both step and terrace directions are occured.

Введение. На данный момент развивается такое актуальное направление, как спинтроника, согласно которой исследуется взаимное влияние зарядовых и спиновых степеней свободы. Согласно данному направлению, поскольку основной идеей является использование спина как переносчика информации, то соответственно одному направлению спина соответствует 1 бит информации. Эта концепция приводит к созданию спиновых устройств, которые уже имеют ряд преимуществ по сравнению с электронными [1]. Целью данной работы является выявление особенностей влияния виценальности поверхности на энергетические спектры поверхностного сплава SbAg₂ на поверхности Ag(4 2 3).

Метод и детали расчета. В работе расчеты производились в рамках теории функционала электронной плотности с использованием обобщенно-градиентного приближения методом проекционно-присоединенных плоских волн, реализованным в пакете программ VASP, с обменно-корреляционным потенциалом GGA – PBE. Для рассмотрения поверхностного сплава SbAg₂, были смоделированы элементарные ячейки: сингулярная (1 1 1), состоящая из 84 атомов со структурой ($\sqrt{3} \times \sqrt{3}$) $R30^{\circ}$ (на поверхности находится 1 атом сурьмы) (рис. 1 *a*), сингулярная поверхность (1 1 1), состоящая из 168 атомов (рис. 1 *б*), виценальная (4 2 3), состоящая из 182 атомов (рис. 1 *в*). На каждой итерации самосогласования собственные значения гамильтониана рассчитывались по сетке *k*-точек 5×5×1 для ячейки из 84 и 3×5×1 для ячеек из 168 и 182 атомов, соответственно, во всей зоне Бриллюэна. Критерий сходимости по энергии взят равным 10⁻⁵ эВ. Процедуры оптимизации параметров решетки и релаксации

атомной структуры систем с гладкими и виценальными поверхностями SbAg₂ проводились с использованием алгоритма сопряженного градиента [2]. Учет релятивистских поправок в Гамильтониан за счет спин-орбитального взаимодействия ведется согласно алгоритму [3]. Учет релятивистских поправок в Гамильтониан за счет спин-орбитального взаимодействия согласно методу оптимизированных проекционных локализованных орбиталей [4].

Рис. 1. Элементарная ячейка (√3×√3)R30° структуры поверхностного сплава SbAg₂ (a). Вид сингулярной поверхности (1 1 1) (б) и виценальной поверхности (4 2 3) (в). Оранжевым обозначены атомы сурьмы, серым – серебра. Границы расчетных ячеек обозначены прямыми линиями

Результаты и обсуждение. В работе были построены энергетические спектры, включающие в себя информацию об орбитальном дихроизме, рассчитывающийся по формуле:

$$D = \frac{p_x - p_y}{p_x + p_y},\tag{1}$$

где p_x и p_y – вклады p состояний Sb, ориентированных по направлениям перпендикулярно (Ox) и вдоль (Oy) ступени, соответственно. Для оценки вклада преобладающего состояния можно судить только о числителе: при $p_x - p_y > 0$ имеем преобладающий вклад p_x состояний, а при $p_x - p_y < 0$ – преимущественно вклад p_y состояний.

На рис. 2 представлена информация об орбитальном составе и спиновой текстуре для гладкой (1 1 1) поверхности и виценальной (4 2 3) поверхности (рис. 2). В обозначениях для орбитального дихроизма: синим цветом отмечен вклад преимущественно p_x состояния, красным – p_y . В случае спиновой текстуры, синему цвету соответствуют ориентации проекции спина вдоль рассматриваемой оси, красному – против.

Отследим влияние виценальности на энергетический спектр с учетом орбитального дихроизма (рис. 2 *a* и δ). Во-первых, исчезла восходящая ветвь p_y состояния. Во-вторых, наблюдается смещение состояний по энергии. Тем самым, если для гладкой поверхности в точке $\overline{\Gamma}$ наблюдались вырожденные состояния при -0,6 эВ и 0,4 эВ, то для виценальной в этих точках состояния p_x и p_y сильно размыты. Относительно точки $\overline{\Gamma}$ при ~0,6 эВ, продвигаясь вдоль $\overline{\Gamma Y}$, наблюдаются разрывы p_x состояний. В-третьих, наблюдается разрыв зоны p_y состояния, ранее выходящей из точки $\overline{\Gamma}$ при 0,4 эВ, на две зоны, слабо зависящие от волнового числа: красные точки вдоль направления $\overline{\Gamma X}$ на уровне Ферми и при -1,2 эВ.

Рис. 2. Дихроизм D поверхностного справа $SbAg_2/Ag$ (1 1 1) (a) и (4 2 3) (б). Спиновая текстура с проекцией спина электронов на ось Ох для (1 1 1) (в) и (4 2 3) (г), на ось Оу для (1 1 1) (д) и (4 2 3) (е)

Для поверзности (1 1 1) наблюдается закручивание спина (рис. 2 *в* и *д*). Из рис. 2 *г* и *е* видно, что проекции спина на оси Ох и Оу присутствуют в сразу в двух направлениях, а расщепление по спину в данном поверностном сплаве поверностями (1 1 1) и (4 2 3) явлется незначительным.

Заключение. Были исследованы поверхностные электронные состояния поверхностных сплавов SbAg₂/Ag(1 1 1) и SbAg₂/Ag(4 2 3). Установлено, что вдоль направления параллельного ступени наблюдается сильное размытие электронных состояний p_x и p_y . Вдоль направления перпендикулярного ступени наблюдается эффект влияния изменения потенциала на поверхности в виде чередующихся ступеней. Стоит отметить, что расщепление по спину в данном поверностном сплаве с пилообразной поверностью (4 2 3) явялется незначительным, также как и в случае гладкой поверхности (1 1 1). Для поверхности (1 1 1) наблюдается эффект закручивания спина, для виценальной (4 2 3) наблюдатся вклады проекций спина s_x и s_y вдоль обоих направлений.

СПИСОК ЛИТЕРАТУРЫ

- 1. Аплеснин С.С. Основы спинтроники: Учебное пособие. Изд. «Лань». 2010. С. 288
- Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T. Numerical Recipes. Cambridge University Press. – New York. – 1986. – P. 1262
- Steiner S., Khmelevskyi S., Marsman M., Kresse G. Calculation of the magnetic anisotropy with projectedaugmented-wave methodology and the case study of disordered Fe1-xCox alloys // Phys. Rev. B. – 2016. – Vol. 93. – P. 224425
- Schüler M., Peil O.E., Kraberger G.J., Pordzik R., Marsman M., Kresse G., Wehling T.O., Aichhorn M.J. Charge self-consistent many-body corrections using optimized projected localized orbitals // Phys.: Condens. Matter. – 2018. –Vol. 30. – P. 475901

УДК 535.41

МОДЕЛИРОВАНИЕ КОГЕРЕНТНОГО СЛОЖЕНИЯ ИМПУЛЬСОВ ИЗЛУЧЕНИЯ В ИНТЕРФЕРОМЕТРЕ И СРАВНЕНИЕ С РЕЗУЛЬТАТАМИ ИЗМЕРЕНИЙ

М.М. Токтаганова, М.В. Шевелев

Научный руководитель: к.ф.-м.н. Д.А. Шкитов Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>mmt8@tpu.ru</u>

SIMULATION OF THE COHERENT PULSE ADDITION IN THE INTERFEROMETER AND COMPARISON WITH MEASUREMENT DATA

<u>M.M. Toktaganova</u>, M.V. Shevelev Scientific Supervisor: PhD D.A. Shkitov Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: <u>mmt8@tpu.ru</u>

Abstract. In this paper, we compare the results of modeling the addition of radiation pulses during their passage through the Michelson interferometer with experimental data.

Введение. Известно, что интерферометры используются в ускорительной технике для измерения когерентного излучения (КИ) [1] от сгустков заряженных частиц с целью диагностики продольных размеров сгустков [2] в пучке. В качестве источника, как правило, используется переходное изучение (ПИ), которое возникает при пересечении заряженной частицей границы раздела двух сред. В настоящее время появились технологии, позволяющие генерировать последовательности электронных сгустков (ПЭС) с высокой частотой следования в пучке [3, 4]. Известно, что подобные ПЭС изменяют спектр КИ [5]. Ранее был предложен метод измерения временной структуры ПЭС на основе интерферометрии дифракционного излучения от щелевой мишени с подвижными пластинами [6-8]. Однако метод сложен в настройке и в технической реализации. Позже нами предложен метод [9] на основе интерферометрии ПИ с помощью интерферометра Майкельсона на основе анализа автокорреляционной функции (АКФ). В данной статье приводится сравнение результатов моделирования сложения импульсов излучения при их прохождении через интерферометр с экспериментальными данными.

Методы исследования. Математическая модель для моделирования АКФ представлена в статье [10], где форм-фактор пучка [1] доработан для случая произвольных неравномерных гауссовых сгустков. В модели не было учтено влияние материалов вакуумного окна, светоделительной пластинки, а также среды распространения излучения на спектр. Моделирование АКФ проводилось в среде Wolfram Mathematica. Параметры ПЭС (энергия электронов E и др.) и условия эксперимента (угол наклона мишени θ_0 и угол максимума интенсивности излучения θ_y) были взяты из статьи [4]. Экспериментальные данные получены из графиков плотности распределений электронов в ПЭС, с помощью программы [11] (количество сгустков *m*, продольные размеры, временная структура и информация о распределение заряда в сгустках). Данные о поперечных размерах сгустков рассчитывались из графиков плотности

распределений электронов, полученных с помощью сцинтилляционного экрана, в предположении гауссова распределения. В качестве детектора предполагалось использование 4.2 К General Purpose Bolometer [12]. Моделирование проводилось с учетом спектра излучения, как от конечной мишени [4], так и от бесконечной мишени, т.е. для одной частицы $d^2W_0/dvd\Omega = 1$.

Результаты и обсуждения. На рис. 1 представлены спектры ПИ от четырех ПЭС и соответствующие им АКФ. Для сравнения приведены экспериментальные АКФ из статьи [4].

Рис. 1. Спектры ПИ от бесконечной мишени, пунктир – функция чувствительности детектора (a), нормированные АКФ, полученные с помощью моделирования и из экспериментальных данных (b)

Сравнение экспериментальных и моделируемых АКФ для m = 2, 3, 8 показывают хорошее согласие в характере поведения функций с небольшим расхождением в положении пиков. Поведение АКФ для случая m=18 сильно отличается. Как видно из спектра для m = 18, основной пик излучения не монохроматичен. Кроме того, наблюдается дополнительный пик в области низких частот. Всё это приводит к возникновению модуляций в АКФ. Есть несколько предположений объясняющих природу расхождения экспериментальных данных и моделирования. Это возможная ошибка в подготовке экспериментальных данных, отсутствие учета влияния материалов светоделительной пластинки, вакуумного окна и среды распространения излучения на спектр, недостаточное описание условий эксперимента в статье [4]. Отметим, что учёт спектра ПИ, в предположении использования мишени конечных размеров, приводит к большему расхождению в результатах моделирования и эксперимента для m = 2, 3, 8. Для m = 18 использование мишени конечных размеров, приводит к дотот.

Заключение. Результаты сравнения экспериментальных данных и моделирования АКФ ПИ показывают в целом хорошее совпадение. В будущем планируется провести моделирование АКФ с учётом ранее не учтённых экспериментальных условий.

Работа поддержана в ТПУ в рамках программы развития № Приоритет-2030-НИП/ИЗ-005-0000-2022.

СПИСОК ЛИТЕРАТУРЫ

- Naumenko G.A. Form-Factors of Relativistic Electron Bunches in Polarization Radiation // Advanced Materials Research. – 2015. – Vol. 1084. – P.138-146.
- Shkitov D.A., Naumenko G.A., Potylitsyn A.P., Shevelev M.V., Zhang J.B., Lu S.L., Yu T.M., Deng H.X. Non-invasive bunch length diagnostics based on interferometry from double diffraction radiation target // Proceedings of 4th International Particle Accelerator Conference. – Shanghai, 2013. – P. 583-585.
- 3. Piot P. et al. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train // Applied Physics Letters. 2011. Vol. 98., № 26. P. 261501.
- Shen Y. et al. Tunable few-cycle and multicycle coherent terahertz radiation from relativistic electrons // Physical Review Letters. – 2011. – Vol. 107., № 20. – P. 204801.
- Науменко Г.А., Потылицын А.П., Каратаев П.В., Шипуля М.А., Блеко В.В. Спектр когерентного переходного излучения, генерируемого модулированным электронным пучком // Письма в ЖЭТФ. – 2017. – Т. 106., № 2. – С.115-118.
- 6. Корноухова Е.В. Применение интерферометрии когерентного дифракционного излучения от щелевой мишени для диагностики последовательностей электронных сгустков в пучках современных компактных ускорителей // Молодежь и наука: Труды XVII Международной телекоммуникационной конференция молодых ученых и студентов. – Москва, 2014. – С. 131-132.
- Shkitov D., Aryshev A., Potylitsyn A., Urakawa J. Double diffraction radiation target interferometry for micro-train beam diagnostics // Proceedings of 5th International Particle Accelerator Conference. – Dresden, 2014. – P. 3635-3637.
- Shkitov D.A. et al. Feasibility of double diffraction radiation target interferometry for compact linear accelerator micro-train bunch spacing diagnostics // Journal of Physics: Conference Series. 2014. Vol. 517., № 1. P. 012024.
- Токтаганова М.М. Разработка метода диагностики расстояния между электронными сгустками ТГцчастоты следования на основе переходного излучения // Инструментальные методы и техника экспериментальной физики: Труды 59-й Международной научной студенческой конференции. – Новосибирск, 2021. – С. 281.
- Toktaganova M., Shkitov D., Shevelev M., Stuchebrov S. Simulation of the coherent radiation interferometry for the beam temporal structure diagnostics // Proceedings of XXVII Russian Particle Accelerator Conference. – Alushta, 2021. – P. 413-416.
- WebPlotDigitizer [Электронный ресурс]. режим доступа: https://automeris.io/WebPlotDigitizer. (дата обращения 14.02.2022)
- 12. Bolometers and IR Detectors System [Электронный ресурс]. режим доступа: https://www.irlabs.com/products/bolometers. (дата обращения 10.03.2022)

187

Россия, Томск, 26-29 апреля 2022 г.

УДК 621.9.048.7

УПРАВЛЕНИЕ СТРУКТУРОЙ АЛЮМИНИЕВОЙ БРОНЗЫ ПРИ ПЕЧАТИ МЕТОДОМ ЭЛЕКТРОННО-ЛУЧЕВОГО АДДИТИВНОГО ПРОИЗВОДСТВА

<u>А.В. Филиппов</u>, Е.С. Хорошко, Н.Н. Шамарин Институт физики прочности и материаловедения СО РАН, Россия, г. Томск, пр. Академический, 2/4, 634055 E-mail: <u>avf@ispms.ru</u>

CONTROL OF THE STRUCTURE OF ALUMINUM BRONZE DURING PRINTING BY THE ELECTRON-BEAM ADDITIVE MANUFACTURING METHOD

A.V. Filippov, E.S. Khoroshko, N.N. Shamarin,

Institute of Strength Physics and Materials Science of SB RAS, Russia, Tomsk, pr. Akademicheskii.,2/4, 634055 E-mail: avf@ispms.ru

Abstract. In the presented work, the structure of samples of aluminum bronze printed by the method of electronbeam additive manufacturing is studied by metallographic methods. The experimental studies carried out made it possible to establish that a change in the heat input by varying the strength of the electron beam current entails a significant change in the structure of the BrA7 bronze samples, which is expressed in an increase in the grain size and shape.

Введение. Алюминиевая бронза при небольшом содержании алюминия (приблизительно до 9,4 вес. %) является однофазным сплавом с гранецентрированной кубической решеткой [1]. Она хорошо подходит для модельных исследований с целью выявления особенностей роста кристаллов, формирования структуры и определения их роли в создании изделий с заданными физикомеханическими характеристиками. Ранее работы по трехмерной печати уже выполнялись на примере порошковой технологии электронно-лучевой [2, 3] и лазерной [4], а также проволочной электродуговой [5] печати. В этих работах показано, что метод печати и используемый филамент оказывают существенное влияние на формирование структуры и механические свойства образцов. В то же время недостаточно внимания уделяется вопросу управления структурой материала в процессе печати, с целью достижения более высоких физико-механических характеристик готовых изделий.

Целью работы является изучение возможности управления структурой образцов алюминиевой бронзы при печати методом электронно-лучевого аддитивного производства.

Экспериментальная часть. Для проведения экспериментальных исследований использовались напечатанные образцы из бронзы БрА7 диаметром 1 мм. Данная проволока использовалась в качестве филамента в процессе электронно-лучевого аддитивного производства. Печать образцов осуществлялась в условиях высокого вакуума на, разработанной в ИФПМ СО РАН, лабораторной установке 3D-печати. В качестве подложки применялась коррозионностойкая аустенитная сталь 12X18H10T в виде пластин толщиной 5 мм. Выбор размеров и материала подложки обусловлен опытом ранее выполненных работ [6, 7]. Для управления структурой напечатанных образцов в процессе печати регулировалось тепловложение (Е), которое определяется по формуле:

$E = (U \mathbf{x} I) / V,$

где *U* – напряжение электронного луча, *I* – ток электронного луча, *V* – скорость печати слоя.

Для изменения тепловложения задавали различные значения тока электронного луча. Всего рассматривалось девять значений тепловложения 0,14 кД/мм, 0,19 кД/мм, 0,24 кД/мм, 0,29 кД/мм, 0,34 кД/мм, 0,39 кД/мм, 0,44 кД/мм, 0,49 кД/мм, 0,54 кД/мм. После печати исследовалась структура образцов металлографическим методом.

Результаты. Типичные примеры структур, выявленные металлографическим методом, формирующихся в напечатанных образцах приведены на рисунках 1-3. При печати с наименьшим диапазоном величин *E* (0,14-0,24 кДж/мм) формируются столбчатые зерна с искривленными границами, а также небольшое количество мелких зерен. При повышении значения *E* до 0,29-0,39 кДж/мм, форма зерен постепенно приобретает более прямолинейный вид, а также заметно увеличивается их ширина. При дальнейшем повышении *E* (0,44-0,54 кДж/мм) наблюдается увеличение ширины зерна, но прямолинейная столбчатая форма сохраняется. Такие изменения в структуре связаны с изменением объема ванны расплава и скорости кристаллизации.

Рис. 1. Типичная структура алюминиевой бронзы, напечатанной при тепловложении 0,14 кД/мм (а), 0,19 кД/мм (б), 0,24 кД/мм (в)

Рис. 2. Типичная структура алюминиевой бронзы, напечатанной при тепловложении 0,29 кД/мм (а), 0,34 кД/мм (б), 0,39 кД/мм (в)

Рис. 3. Типичная структура алюминиевой бронзы, напечатанной при тепловложении 0,44 кД/мм (а), 0,49 кД/мм (б), 0,54 кД/мм (б)

Заключение. Выполненные экспериментальные исследования позволили установить, что изменение тепловложения путем варьирования силы тока электронного луча влечет за собой существенное изменение в структуре образцов бронзы БрА7. Увеличение тепловложения приводит к формированию крупных столбчатых зерен.

Исследование выполнено при финансовой поддержке РНФ в рамках научного проекта № 21-79-00084.

СПИСОК ЛИТЕРАТУРЫ

- Liu X., Ohnuma I., Kainuma R., Ishida K. Phase equilibria in the Cu-rich portion of the Cu-Al binary system. // Journal of Alloys Compounds. – 1998. – Vol. 264. – P. 201–208.
- Wolf T, Fu Z, Körner C. Selective electron beam melting of an aluminum bronze: Microstructure and mechanical properties. // Materials Letters. – 2019. – Vol. 238. – P. 241–244.
- Pobel R., Lodes M.A., Körner C. Selective Electron Beam Melting of Oxide Dispersion Strengthened Copper // Advanced Engineering Materials – 2018. – Vol. 20. – P. 1–7.
- Murray T., Thomas S., Wu Y., Neil W., Hutchinson C. Selective laser melting of nickel aluminium bronze. // Additive Manufacturing. – 2020. – Vol. 33. – P. 101122
- Liu K., Chen X., Shen Q., Pan Z., Singh R.A., Jayalakshmi S., Konovalov S. Microstructural evolution andmechanical properties of deep cryogenic treated Cu–Al–Si alloy fabricated by Cold Metal Transfer (CMT) process. // Materials Characterization. – 2020. – Vol. 159. – P. 110011.
- Хорошко Е.С., Филиппов А.В., Шамарин Н.Н., Москвичев Е.Н., Утяганова В.Р., Тарасов С.Ю., Савченко Н.Л., Колубаев Е.А., Рубцов В.Е., Лычагин Д.В. Исследование структуры и механических свойств медного сплава системы Cu-Al-Si-Mn, полученного методом электронно-лучевого аддитивного производства // Известия высших учебных заведений. Физика. – 2021. – Т. 64. – № 2 (758). – С. 130-135.
- Хорошко Е.С., Филиппов А.В., Тарасов С.Ю., Шамарин Н.Н., Колубаев Е.А., Москвичев Е.Н., Лычагин Д.В. Исследование структуры и механических свойств алюминиевой бронзы, напечатанной методом электронно-лучевого аддитивного производства // Обработка металлов (технология, оборудование, инструменты). – 2020. – Т. 22. – № 2. – С. 118-129.

УДК 621.45.038.7

ИССЛЕДОВАНИЕ ВЛИЯНИЯ УСЛОВИЙ НАНЕСЕНИЯ ПОКРЫТИЙ CRN/ZRN НА ИХ МЕХАНИЧЕСКИЕ СВОЙСТВА И НАПРЯЖЕНИЯ

<u>А.В. Филиппов</u>, Н.Н. Шамарин Институт физики прочности и материаловедения СО РАН, Россия, г. Томск, пр. Академический, 2/4, 634055 E-mail: <u>avf@ispms.ru</u>

INVESTIGATION OF THE EFFECT OF DEPOSITION CONDITIONS OF CRN/ZRN COATINGS ON THEIR MECHANICAL PROPERTIES AND STRESSES

A.V. Filippov, N.N. Shamarin

Institute of Strength Physics and Materials Science of SB RAS, Russia, Tomsk, pr. Akademicheskii.,2/4, 634055 E-mail: avf@ispms.ru

Abstract. The paper considers the influence of the formation conditions of CrN/ZrN multilayer coatings on their mechanical properties and stresses. Using a synchrotron radiation source, the stresses σ_x were determined. It has been established that a decrease in the duration of deposition from cathodes provides a multiple decrease in the thickness of individual layers, which also leads to an increase in the nanohardness of the formed coatings.

Введение. Повышение качества продукции, выпускаемой промышленными предприятиями, является важной задачей для повышения её конкурентоспособности и развития экономики в целом. Нанесение покрытий на металлы и сплавы является одним из способов увеличения физико-химических и механических характеристик изделий [1]. Среди таких характеристик в машиностроении особенно выделяют твердость, прочность, износостойкость, коррозионную стойкость [2, 3]. В настоящее время существуют различные методы нанесения покрытий, которые главным образом отличаются по способу переноса материала на поверхность изделия. Основными технологиями являются химическое и физическое осаждение, которые принципиально различаются между собой. Покрытия из нитридов хрома и циркония чаще наносят методами вакуумно-дугового и магнетронного напыления [4]. Используя два катода можно управлять составом покрытий и формировать требуемые свойства. Сочетание нитридов хрома и циркония позволяет добиться комплекса свойств, а именно, высокой твердости, износостойкости и коррозионной стойкости [5]. Тем не менее не все особенности формирования данных многослойных покрытий в настоящее время исследованы.

Целью работы является исследование свойств многослойных покрытий CrN/ZrN, нанесенных на подложки из сплава BK8, плазменно-ассистированным вакуумно-дуговым методом при различных режимах.

Экспериментальная часть. Экспериментальные исследования выполнены с использованием образцов с многослойными покрытиями CrN/ZrN, которые были нанесены на подложки из сплава BK8 плазменно-ассистированным вакуумно-дуговым методом. Для контролируемого изменения свойств варьировались режимы нанесения покрытий, которые определялись длительностью напыления с катодов Zr и Cr. Режим 1 – длительность напыления с катода 20 секунд, режим 2 – 2,85 секунды, режим 3 – 2 секунды, режим 4 – 1,25 секунды. Исследование поперечных сколов покрытий выполнено на растровом

электронном микроскопе Apreo 2 S (Thermo Fisher Scientific, США). Наноиндентирование выполнялось на нанотвердомере NANO Hardness Tester NHT–TTX S (CSEM, Швейцария). Анализ данных наноиндентирования проводился методом Оливера–Фарра. Анализ напряжений выполнен методом sin² w на оборудовании рентгенофазового анализа накопителя электронов синхротронного излучения ВЭПП-3 в составе ЦКП СЦСТИ на базе УНУ «Комплекс ВЭПП-4 – ВЭПП-2000» в ИЯФ СО РАН.

Результаты. На рисунке 1 приведены изображения поперечных сколов, исследуемых покрытий. Средняя толщина покрытий нанесённых по режиму 1 составляет ~100 нм, по режиму 2 ~20 нм, по режиму 3 ~10 нм, по режиму 4 ~5 нм. Это является закономерным, вследствие того, что сокращение длительности напыления с отдельного катода приводит к меньшему переносу распыляемого металла на поверхность подложки. На рисунке 2а показана диаграмма значений нанотвердости, исследуемых покрытий. Результаты указывают на увеличение нанотвердости при сокращении длительности напыления с катодов Cr и Zr. На рисунке 2б показан диаграмма значений напряжений σ_x . Из полученных данных следует, что уменьшение длительности напыления с выбранных катодов приводит к уменьшению толщины отдельных слоев CrN и ZrN, увеличению их нанотвердости и уровня напряжений.

Рис. 1. Типичные растровые электронные изображения поперечных сколов покрытий, нанесенных по режиму 1 (а), 2 (б), 3 (в), 4 (г)

Россия, Томск, 26-29 апреля 2022 г.

Рис. 2. Диаграммы значений нанотвердости покрытий (a) и напряжений σ_x (b)

Заключение. Исследованы образцы с многослойными покрытиями CrN/ZrN, нанесенными при разных режимах плазменно-ассистированного вакуумно-дугового напыления. Установлено, что сокращение длительности нанесения отдельных слоев CrN и ZrN приводит к уменьшению их толщины, повышению нанотвердости и напряжений.

Работа выполнена при финансовой поддержке Российской Федерации в лице Министерства науки и высшего образования (проект № 075-15-2021-1348) в рамках мероприятия № 1.1.16.

СПИСОК ЛИТЕРАТУРЫ

- Khadem M., Penkov O.V., Yang H.K., Kim D.E. Tribology of multilayer coatings for wear reduction: A review. // Friction. – 2017. – Vol. 5. – №. 3. – P. 248-262.
- Jagielski J., Khanna A.S., Kucinski J., Mishra D.S., Racolta P., Sioshansi P., Tobin E., Thereska J., Uglov V., Vilaithong T., Viviente J., Yang Si-Ze., Zalar A. Effect of chromium nitride coating on the corrosion and wear resistance of stainless steel // Applied surface science. 2000. Vol. 156. №. 1-4. P. 47-64.
- 3. Maksakova O. V., Pogrebnjak O. D., Beresnev V. M. Features of Investigations of Multilayer Nitride Coatings Based on Cr and Zr, // Progress in physics of metals. 2018. Vol. 19. P. 25-48.
- Соболь О.В., Андреев А.А., Горбань В.Ф., Столбовой В.А., Мейлехов А.А., Постельник А.А. Возможности структурной инженерии в многослойных вакуумно-дуговых ZrN/CrN-покрытиях путем изменения толщины нанослоев и подачи потенциала смещения // Журнал технической физики. – 2016. – Т. 86. – №. 7. – С. 100-103.
- Chen S.F., Kuo Y.C. Wang C.J., Huang S. H., Lee J.W., ChanY.C., .Duh J.G, Hsieh, T.E. The effect of Cr/Zr chemical composition ratios on the mechanical properties of CrN/ZrN multilayered coatings deposited by cathodic arc deposition system // Surface and Coatings Technology. – 2013. – №. 231. – P. 247-252.

УДК 004.942.001.57

МОДЕЛИРОВАНИЕ РАСПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНЫХ ПОЛЕЙ В ПРОЦЕССЕ ЭЛЕКТРОИМПУЛЬСНОГО ПЛАЗМЕННОГО СПЕКАНИЯ

Лю Ханьлэй, Т.Р.Алишин

Научный руководитель: д.ф.-м.н. Э.С. Двилис Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>hanhanliu69@gmail.com</u>

SIMULATION OF THE DISTRIBUTION OF TEMPERATURE FIELDS IN THE PROCESS OF ELECTRIC PULSED PLASMA SINTERING

Liu Hanlei, T.R. Alishin Scientific Supervisor: Dr. E.S. Dvilis Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: <u>hanhanliu69@gmail.com</u>

Abstract. This research work is devoted to modeling the SPS process in the program for finite element modeling COMSOL Multiphysics. As part of the study, the influence of the properties of sintered powders and the geometric parameters of the mold on the distribution of thermal fields in the sintering zone was evaluated.

Введение. Электроимпульсное плазменное спекание (SPS) используют в производстве широкого спектра изделий из различных материалов. Одним из главных преимуществ SPS перед традиционными технологиями спекания является высокая скорость процесса, обусловленная нагревом пресс-формы с порошком за счет пропускания через нее импульсного тока. Однако полностью достоверного описания всех физических процессов, происходящих при SPS, до сих пор не существует, а исследования проводятся по критериям достижения требуемых характеристик спечённого материала. Одним из основных параметров воздействия при SPS является температура, существенные перепады и неравномерное распределение полей которой по объёму консолидируемого образца могут привести к неравномерному распределению свойств и подлежат минимизации путём подбора оптимального сочетания параметров спекания. Практическая реализация таких оптимизационных исследований ограничена техническими трудностями в измерении температуры в различных областях консолидируемого образца, находящегося в закрытой жёсткой пресс-форме. Вариантом решения указанной проблемы является конечно-элементное моделирование процесса SPS. Верификация модели может быть проведена по значениям температуры на доступных для контроля областях оснастки, а полученные поля распределения температуры позволят ограничить диапазон экспериментального поиска оптимальных режимов SPS.

Целью данной работы является изучение влияния свойств порошка и геометрических параметров прессовой оснастки на характер и равномерность распределения температурных полей в зоне спекания в процессе SPS методами конечно-элементного моделирования.

Экспериментальная часть. В процессе исследования использовали материалы с различными тепло- и электрофизическими свойствами: медь и диоксид циркония. Параметры электропроводности,

теплопроводности и теплоемкости образцов были взяты из литературных данных [1, 2].

Моделирование распределения температурных полей в зоне спекания проводили с помощью программы конечно-элементного моделирования COMSOL Multiphysics. 3D модель пресс-формы построили на основе размеров реальной оснастки, рисунок 1 *а*.

Рис. 1. а - 3D модель пресс-формы с подставками, б - схема осесимметричных граничных условий

Тепловые условия модели включают в себя тепловое излучение с поверхности оснастки и конвективный теплообмен с системой водяного охлаждения. Ввод электрического напряжения осуществляется сверху, заземление снизу в соответствии со схемой, рисунок 1 *б*.

Результаты. Для изучения влияния размера пресс-формы на равномерность распределения температурных полей в образце использовали матрицы с различной толщиной стенки (12,5 мм – 25 мм). Глубина отверстия для измерения температуры во всех экспериментах была постоянной и равнялась 10 мм. Максимальная и минимальная температура образцов из меди и диоксида циркония и температура измерительного отверстия в зависимости от толщины матрицы представлены на рисунке 2. Увеличение толщины стенки матрицы приводит к снижению температуры образцов и увеличению разницы между реальной и измеряемой температурой. Толщина матрицы не оказывает существенного влияния на величину температурного перепада в медном образце, который на всем изученном диапазоне значений остается равным 7 С°. В случае диоксида циркония увеличение толщины матрицы приводит к росту температурного перепада с 16 до 25 С° на изученном диапазоне значений.

Рис. 2. Максимальная и минимальная температура образца и температура измерительного отверстия в зависимости от толщины матрицы: а - диоксид циркония, б - медь

Россия, Томск, 26-29 апреля 2022 г.

Кроме того, оценивали влияние отверстия для измерения температуры (измерительное отверстие) на равномерность распределения температурных полей в образцах из меди и диоксида циркония (рисунок 3). На части образца, находящейся напротив измерительного отверстия, наблюдается область с минимальной температурой, однако этот эффект уменьшается с увеличением толщины стенки матрицы, и распределение температуры в образцах становится более равномерным в диаметральном направлении.

В случае с диоксидом циркония наблюдается температурный градиент по высоте образца, что, предположительно, связано с использованием пуансонов различной длины.

Рис. 3. Распределение температурных полей в образцах из меди и диоксида циркония при спекании в матрицах с различной толщиной стенки, стрелка указывает на положение измерительного отверстия относительно образца

Заключение. Увеличение толщины стенки матрицы пресс-формы, на изученном диапазоне значений, приводит к снижению средней температуры образцов из меди и диоксида циркония, и увеличению разницы между реальной температурой образца и измеряемой. Кроме того, с увеличением толщины стенки матрицы происходит рост температурного перепада в образцах из диоксида циркония, для медных образцов данный параметр остается постоянным на всем изученном диапазоне значений. Наличие в пресс-форме отверстия для измерения температуры отрицательно влияет на равномерность распределения температурных полей в образцах из обоих исследуемых материалов, с увеличением размеров матрицы распределение температурных полей становится более равномерным.

СПИСОК ЛИТЕРАТУРЫ

- Vanmeensel K. Modelling of the temperature distribution during field assisted sintering // Acta Materialia. 2005. – V. 52, № 16. – P. 4379-4388
- Anselmi-Tamburini U. Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions // Materials Science and Engineering: A. – 2005. – V. 394. – P. 139-148

УДК 681.5.075

ОЦЕНКА НЕИЗМЕРЯЕМЫХ КОМПОНЕНТ ВЕКТОРА СОСТОЯНИЯ ДИНАМИЧЕСКИХ ОБЪЕКТОВ

<u>М.Д. Хильчук¹</u>, Е.А. Тарасов¹, Ф.В. Перевощиков² Научный руководитель: к.ф.-м.н. Е.А. Тарасов ¹Национальный исследовательский Томский государственный университет, Россия, г. Томск, пр. Ленина, 36, 634050 ²Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: ma6a70@gmail.com

ESTIMATION OF IMMEASURABLE COMPONENTS OF THE STATE VECTOR OF DYNAMIC OBJECTS

<u>M.D. Khilchuk¹</u>, E.A. Tarasov¹, F.V. Perevoshchikov² Scientific Supervisor: cand. phys.-math. sciences, E.A. Tarasov ¹Tomsk State University, Russia, Tomsk, Lenin str., 36, 634050 ²Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: ma6a70@gmail.com

Abstract. In this paper, we study the operation of a state observer for a DC motor with an independent perturbation and calculate the unmeasurable components of this vector using the measured components. A DC motor and a state observer were simulated using an electromagnetic model. A picture of the distribution of singular points of an observer of a dynamic object is obtained when the parameters of the adaptation law change in the compensation contour.

Введение. В настоящее время, управляемые технические объекты представляют собой совокупность электромеханического преобразователя энергии, силового преобразователя и устройства управления. Последнее обеспечивает управление в соответствии с заданным алгоритмом, который опирается на данные, полученные с групп датчиков измеряемых переменных состояний. Среди таких датчиков, есть использующие эффект Холла. Они обеспечивают высокий диапазон и точность измерений, но при этом имеют цену в несколько порядков, превышающую другие датчики [1].

Так же есть аппараты, устанавливаемые непосредственно на вал электромеханического преобразователя или исполнительного механизма. К таким механизмам можно отнести датчики скорости, положения и момента. В некоторых случаях их использование нецелесообразно или вовсе невозможно [2]. Этот факт обуславливает невозможность получения достоверных данных о механических компонентах полного вектора состояния системы, что усложняет задачу качественного управления объектом в соответствии с технологическими требованиями.

Однако, с развитием микропроцессорной техники стало возможным использовать специальные математические конструкции, которые могут на основе измеряемых компонент вектора состояния управляемого преобразователя вычислить неизмеряемые компоненты. В свою очередь эти компоненты

Россия, Томск, 26-29 апреля 2022 г.

позволяют решить задачу управления подобным электромеханическим объектом [3]. Такие алгоритмы называются наблюдателями состояния. Таким образом, исследование наблюдателей состояния является актуальной задачей.

Целью данной работы является построение модели наблюдателя состояния в совокупности с двигателем постоянного тока с независимым возмущением и исследование его работы в различных режимах.

Математическое моделирование. Наблюдатель состояния некоторой системы (в нашем случае двигателя постоянного тока независимого возбуждения (ДПТ НВ) 2ПФ160LГУХЛ4) строится как следящая система на основе уравнений электромагнитных процессов динамической системы. А также кроме моделей, содержит еще и регулятор, позволяющий произвести перестройку адаптивной модели к реальным процессам, происходящих в управляемом преобразователе (рис. 1).

Уравнения адаптивной модели основываются на системе уравнений и принимают вид (1):

$$\begin{cases} \frac{d\hat{X}}{dt} = \hat{A} \cdot \hat{X} + B \cdot U + G \cdot (\hat{Y} - Y), \\ \hat{Y} = C \cdot \hat{X}. \end{cases}$$
(2)

где \hat{X} — оценка вектора состояния; \hat{Y} — оценка вектора измеряемых величин; \hat{A} — перенастраиваемая матрица собственной динамики; G — матрица корректирующих коэффициентов; B — матрица управления; U — вектор управляющих воздействий; C — матрица выхода.

В свою очередь, для оценки неизмеряемой переменной пользуется некоторым законом адаптации. Он может синтезироваться, например, из анализа подобранной функции Ляпунова и ее производной (2) [3].

$$\hat{\boldsymbol{Z}} = f(\boldsymbol{Y} - \hat{\boldsymbol{Y}}, \hat{\boldsymbol{Z}}).$$
⁽²⁾

где \hat{Z} – вектор неизмеряемых величин.

Результаты. На основе изображений по Лапласу вышеописанных уравнений (1-3) и широко известных моделей двигателя постоянного тока [1] получена имитационная модель рассматриваемого динамического объекта с параллельно включённым наблюдателем состояния с П-принципом компенсации. Расчёт имитационной модели производился в среде MATLAB Simulink. Для оценки влияния значения коэффициента усиления на работу наблюдателя было проведено ряд экспериментов с различными коэффициентами адаптации – k_{n1} в диапазоне от 0 до R_{n} с шагом $0, 2 \cdot R_{n}$, где R_{n} - полное активное сопротивление якорной цепи. Результаты вычисления оценки $\hat{\omega}(t)$ и тренда ее изменения при варьировании k_{n1} представлены на рис. 1.

Рис. 1. Слева – отработка наблюдателем возмущающего воздействия на систему, справа – расположение сопряженных полюсов наблюдателя на комплексной плоскости при изменении $k_{{
m n}1}$

Заключение. В результате проведенных исследований было выявлено, что действительная часть полюсов наблюдателя отрицательна для асимптотически устойчивых процессов, что согласуется с классической теорией управления [4]. При увеличении k_{n1} расстояние особых точек до границы устойчивости уменьшается вместе со степенью колебательности которая, в свою очередь характеризует степень затухания процесса. При большем k_{n1} степень затухания меньше и переходный процесс длится дольше. Помимо этого, стоит отметить то, что работа на границе устойчивости обеспечивается при $k_{n1} = R_n$, поскольку внутренние обратные связи электромагнитной системы компенсируются и система приобретает автоколебательный характер.

СПИСОК ЛИТЕРАТУРЫ

- Анучин А.С. Системы управления электроприводов: учебник для вузов. М.: Издательский дом МЭИ, 2015. – 373 с.
- 2. Лаходынов В.С. Модели оптимальной оценки и прогноза неизмеряемой переменной состояния электромеханического объекта: Дис. канд. техн. наук. Томск, 2010. 146 с.
- Калачев Ю.Н. Наблюдатели состояния в векторном электроприводе: Учеб. пособие. М.: Самиздат, 2015. – 90 с.
- Теория автоматического управления: Учеб. для вузов по спец. «Автоматика и телемеханика». В 2-х
 ч. Ч. І. Теория линейных систем автоматического управления / Под ред. А.А. Воронова. М.: Высш. шк., 1986. 367 с.

УДК 539.32

TRIPLY PERIODIC MINIMAL SURFACE STRUCTURES MANUFACTURED BY EBM IN DIFFERENT APPROACHES

D. Khrapov

Scientific Supervisor: Dr. M. A. Surmeneva Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: <u>dah8@tpu.ru</u>

ПОЛУЧЕНИЕ ТРИЖДЫ ПЕРИОДИЧЕСКИХ ПОВЕРХНОСТЕЙ С МИНИМАЛЬНОЙ ЭНЕРГИЕЙ РАЗНЫМИ СПОСОБАМИ С ПОМОЩЬЮ МЕТОДА ЭЛП

<u>Д. Храпов</u>

Научный руководитель: к. ф. - м. н., М. А. Сурменева Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: dah8@tpu.ru

Аннотация. В настоящей работе описано влияние режимов получения металлических метаматериалов на основе трижды периодических поверхностей с минимальной энергией, полученных аддитивным способом. В частности, описано влияние режимов на морфологические и механические свойства метаматериалов.

Introduction. Porous metamaterials are promising candidates for biomedical implants and light-weight and energy-absorbing structures, which can be based on different types of unit cells [1]. The unit cell type and size as well as the material surface properties are among the most critical parameters influencing implantinduced osteogenesis. The unit cells, based on triply periodic minimal surfaces (TPMSs), have attracted attention due to their zero-mean curvatures at every point, which assists bone tissue ingrowth [2]. Having no sharp geometric changes, they help avoid the creation of obvious stress-concentrating areas. The most promising TPMS structure is a gyroid because it exhibits higher stiffness than other structures with the same porosity and is manufactured from the same material [3]. It possesses more uniform axisymmetric stiffness [4]. The complex shape of the gyroid is impossible to obtain using traditional methods and requires novel methods, such as additive manufacturing.

TPMS can be produced by EBM using different manufacturing parameter sets commonly known as Themes. "Melt" Themes originally designed for manufacturing solid structural elements require a 3D model with predetermined material thickness. The "Wafer" Theme originally designed for manufacturing different support structures uses zero-thickness 3D models [5]. Taking into consideration the complexity of TPMS, the Wafer Theme may become a new key to controlling the specimen porosity and preventing the stress shielding effect.

Our initial assumption was that the specimens based on a 200 μ m thick model manufactured using Melt Theme and the specimens based on a zero-thickness model manufactured using Wafer Theme would have identical sheet thickness and identical mechanical properties. This assumption was based on the fact that the beam spot diameter set in the ARCAM A2 machine is commonly 200 μ m [5].

We address the relationship between structural performance and manufacturing modality, keeping porosity constant. The novelty of the research lies in the combination of design methods of TPMS and EBM-manufacturing modalities. The aim of the current investigation was to evaluate the worthiness of the Wafer Theme in comparison with the Melt Theme for TPMS structures fabrication from the mechanical point of view.

Research methods. The shape of gyroid structures was modeled using the gyroid equation:

sin(kx) cos(ky) + sin(ky) cos(kz) + sin(kz) cos(kx) = 0(1)

The coefficient *k* influences the size of the unit cell. A zero-thickness model was prepared for Wafer Theme, and a model with a thickness of 200 μ m was prepared for Melt Theme. The gyroid is presented in Figure 1. The second set of models was produced from the first one by assigning a thickness of 200 μ m. The overall limits of the gyroid surfaces were chosen from -5/2 π to 5/2 π in all directions, which allowed us to obtain a total structure size of 15 × 15 × 15 mm³.

Fig 1. Gyroid models and manufactured specimens: $a - 200 \mu$ m-thick model, b - a specimen manufactured using in Melt Theme, c - zero-thickness model, d - a specimen manufactured using in Wafer Theme

Gyroid structures were manufactured using an ARCAM A2 EBM machine (Mölnlycke, Sweden) from Ti-6Al-4V powder by ARCAM EBM with standard parameter settings for the chosen material with a layer thickness of 50 µm and processing temperature of 720 °C.

X-ray computed tomography (XCT) was used to evaluate the inner structure, surface roughness, and morphology, to reveal possible defects and calculate the average and maximum wall thickness and porosity of the scaffolds. A CT study was performed using a Sauervein Systemtechnik (RayScan Technologies GmbH) working with an X-ray tube voltage of 135 kV, a current of 70 mA, and a voxel size of 15.5 µm. The data were preprocessed using FiJi ImageJ software. VG Studio Max 3.1 software was used for image analysis and 3D rendering. Quasi-static uniaxial compression and tension tests were undertaken using an INSTRON 3369 universal testing machine (Illinois Tool Works, Inc.) with a 50 kN load cell. Testing of the lattice specimens was conducted according to ISO 13314:2011 [6]. All mechanical tests were performed at room temperature.

Results. Using the XCT data it was established that the average wall thickness for the gyroid manufactured in Wafer Theme is about 0.25, while the same parameter for the gyroid manufactured in Melt Theme is about 0.38 mm. The reason for the difference between the thicknesses of the designed structures and MT manufactured ones lies in additional thickness caused by 2 contours and, probably, wider than expected melt pool. Since the surface of the gyroid is curved, it is impossible to evaluate roughness by traditional methods. It is known that arithmetic roughness (Ra) for vertical struts of the EBM manufactured structures is about 40 μ m, while the mean value of the maximum height of the surface profiles of vertical struts (R_t) is 212 μ m [5].

Young's modulus obtained after compression tests for both specimens is about 1.5 GPa, though they have different wall thickness and porosity. Young's modulus obtained after tension tests for both specimens is about

201

1.2 GPa. However, yield strength σ_y after compression tests for the specimen manufactured in Melt Theme is about 65 MPa, while for the specimen obtained in Wafer Theme it is only 30 MPa. Yield strength σ_y after tension tests for the specimen manufactured in Melt Theme is about 37 MPa, while for the specimen obtained in Wafer Theme it is only 5 MPa.

The gyroids manufactured in Wafer Theme exhibit through-hole defects in the surface sections perpendicular to the building direction. They supposedly appear in each horizontal saddle point because the areas of the zero-thickness 3D model are not detected by slicing software and, therefore, are not processed by the beam. If it is confirmed, the respective CAD file corrections can be introduced, and WT gyroids with thinner walls could be manufactured with a minimum of through-hole defects.

Conclusion. TPMS gyroid sheet-based structures were for the first time successfully manufactured by EBM using Melt and Wafer Themes. The specimens manufactured using Melt and Wafer Themes have different wall thicknesses. The minimum mean wall thickness, which can be achieved using standard Melt Theme in ARCAM EBM A2 machine, is around 380 μ m, while the minimum mean wall thickness with Wafer Theme is 250 μ m. Despite the difference in thickness, Young's moduli are approximately the same for compression (1.5 GPa) and tension (1.2 GPa) tests. Thus, the specimens manufactured in Wafer and Melt Theme shave identically at small strains up to 5 % (in the elastic range). The gyroids manufactured in Wafer Theme exhibit through-hole defects in the surface sections perpendicular to the building direction. The through-holes connect two separate void regions of TPMS, thus, enabling better fluid transport, tissue ingrowth, and differentiation.

The research was performed at Tomsk Polytechnic University within the grant of RSF 20-73-10223.

REFERENCES

- Al-ketan O., Rowshan R., Al-rub R. K. A. Topology-Mechanical Property Relationship of 3D Printed Strut, Skeletal, and Sheet Based Periodic Metallic Cellular Materials // Additive Manufacturing. – 2018. – Vol. 19. – P. 167–183.
- Zadpoor, A.A. Bone Tissue Regeneration: The Role of Scaffold Geometry // Biomaterials Science. 2014. –Vol. 2. – P. 231-245.
- Kapfer S.C., Hyde S.T., Mecke K., Arns C.H., Schröder-Turk G.E. Minimal Surface Scaffold Designs for Tissue Engineering // Biomaterials. – 2011. – Vol. 32 (29). – P. 6875–6882.
- Aremu A., Maskery I., Tuck C., Ashcroft I., Wildman R., Hague R.A Comparative Finite Element Study of Cubic Unit Cells for Selective Laser Melting /// 25th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference. – 2014. – P 1238–1249.
- Suard M. Characterization and Optimization of Lattice Structures Made by Electron Beam Melting // Grenoble. – 2015. – 234 p.
- International organization for Standartization. Mechanical Testing of Metals Ductility Testing Compression Test for Porous and Cellular Metals, 2011.

УДК 621.762.4.045

ИЗУЧЕНИЕ ДЕФОРМАЦИИ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ В ПРОЦЕССЕ КВАЗИИЗОСТАТИЧЕСКОГО ПРЕССОВАНИЯ

Х. Цзычжао, Т.Р. Алишин

Научный руководитель: профессор, д.ф.-м.н. Э.С. Двилис Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>alishin.95@mail.ru</u>

STUDYING THE DEFORMATION OF METAL POWDERS IN THE PROCESS OF QUASIISOSTATIC PRESSING

<u>H. Czychzhao</u>, T.R. Alishin Scientific Supervisor: Prof., Dr. E.S. Dvilis Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: <u>alishin.95@mail.ru</u>

Abstract. The work is devoted to the study of the influence of the rigidity of the elastic shell on the coefficients of the dimensionless logarithmic pressing equation and the evaluation of the uniformity of compression of the powder body in the process of quasiisostatic pressing.

Введение. Квазиизостатическое прессование (КИП) является перспективной технологией производства изделий сложной формы из порошковых материалов [1, 2], однако широкому распространению данной технологии препятствует недостаточно развитая теоретическая база и отсутствие аппарата, позволяющих корректно описывать и учитывать особенности поведения системы «жёсткая пресс-форма – эластичная оболочка – порошковое тело». Целью данной работы является изучение деформации металлических порошков в процессе КИП. В ходе исследования оценили влияние жесткости эластичной оболочки на коэффициенты безразмерного логарифмического уравнение прессования и равномерность обжатия порошкового тела в процессе КИП.

Материалы и методики эксперимента. Для изучения влияния жесткости эластичной оболочки на деформацию порошкового тела в процессе КИП использовали порошки меди (Партия 31, Вектон), молибдена (ПМ-99,95, Полема), и алюминиево-магниевого сплава АМГ-6. Эластичные оболочки изготавливали из полиуретанов марки «Силагерм»: «Силагерм 6050», «Силагерм 6070» и «Силагерм 6090». Оценку равномерности обжатия порошкового тела в процессе КИП проводили в оболочках с формообразующей полостью в виде сферы диаметром 20мм. Давление эластичной оболочке с порошком в процессе КИП передавали с помощью закрытой жесткой цилиндрической пресс-формы диаметром 50 мм для одноосного одностороннего прессования. Схема реализации КИП представлена на рисунке 1 *а*. Необходимое усилие прессования создавали с помощью гидравлического пресса ИП-500М-авто.

Геометрические параметры компактов регистрировали с помощью электронного штангенциркуля с точностью до 0,01 мм, плотность компактов определяли методом гидростатического взвешивания, для гидроизоляции пористых образцов использовали цапонлак.

В качестве параметра, характеризующего равномерность обжатия порошкового тела в процессе прессования, использовали отношение диаметра компакта, измеренного вдоль оси прессования (D₁), к диаметру компакта, измерение которого проводилось в сечении максимальной площади, перпендикулярном оси прессования (D₂). Схема определения геометрических размеров компактов представлена на рисунке 1 *б*.

Рис. 1. а - схема реализации КИП: 1 – пуансоны, 2 – матрица, 3 – эластичная оболочка, 4 – порошковое тело; б - схема определения геометрических размеров компактов

Зависимость плотности компактов от давления описывали с помощью безразмерного логарифмического уравнения прессования (1).

$$\rho = b \times ln \left(\frac{P_{ap}}{P_{sp}}\right) + 1, \tag{1}$$

где, *b* – прессуемость, *P_{np}* – фактическое давление прессования, *P_{кp}* – критическое давление прессования [3]

Результаты исследования и их обсуждение. На рисунке 1 представлена зависимость параметра D_1/D_2 от твердости материала оболочки.

Рис. 2. Зависимость равномерности обжатия порошкового тела в процессе КИП от жёсткости эластичной оболочки

Зависимость равномерности уплотнения порошкового тела от жесткости эластичной оболочки для всех изученных материалов имеет линейный вид. Увеличение жесткости оболочки приводит к снижению

равномерности уплотнения всех исследуемых порошков. Давление прессования, на изученном диапазоне значений, не оказывает существенного влияния на равномерность обжатия порошков, что говорит о определении формы компакта на начальных этапах прессования.

В таблице 1 представлены коэффициенты безразмерного логарифмического уравнения прессования изученных порошковых материалов.

Таблица 1

Материал	Твердость оболочки по Шору (А)	Равномерность обжатия (D ₁ /D ₂)	Ркр, МПа	Уплотняемость (b)	
	90	0,9319	1196,29	0,0998	
АМГ6	70	0,9467	2341,80	0,0771	
	50	0,9844	4717,01	0,0621	
Cu	90	0,8467	1044,80	0,1377	
	70	0,8949	1327,26	0,1300	
	50	0,9291	1110,00	0,1367	
Мо	90	0,8718	6527,10	0,1313	
	70	0,9123	20514,46	0,1000	
	50	0,9463	28755,00	0,0935	

Параметры прессуемости металлических порошков

Увеличение твердости эластичной оболочки приводит к повышению уплотняемости и снижению величины критического давления прессования порошков АМГ-6 и молибдена. Характер зависимости параметров прессуемости медного порошка от твердости эластичной оболочки на изученном диапазоне значений не очевиден.

Заключение. Повышение жесткости эластичной оболочки приводит к снижению равномерности уплотнения порошков в процессе КИП. Давление прессования в изученном диапазоне значений не оказывает существенного влияния на параметр D₁/D₂, что говорит о определении формы компакта на начальных этапах уплотнения порошкового тела. Увеличение твердости эластичной оболочки приводит к повышению уплотняемости и снижению величины критического давления прессования порошков АМГ-6 и молибдена. Характер зависимости параметров прессуемости медного порошка от твердости эластичной оболочки, на изученном диапазоне значений, не очевиден.

Исследование выполнено на базе ЦКП НОИЦ НМНТ

СПИСОК ЛИТЕРАТУРЫ

- 1. Кузнецов П.А., Мартенс К.К., Гоциридзе А.В. Опыт эластостатического прессования порошковых изделий сложной формы // Металлообработка. 2014. № 2 (20). С. 17-19.
- 2. Алымов М.А., Шустов В.С., Анкудинов А.Б., Зеленский В.А. Получение пористой трубки из порошка карбида титана // Перспективные материалы. 2011. № 1. С. 94-96.
- Двилис Э.С. Закономерности консолидации порошковых систем при изменении деформации и физических воздействий: дисс.... д-ра физ.-мат. наук. – Томск, 2014. – 386 с.

205

УДК 620.18, 620.172, 620.178.1

ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ СТРУКТУРЫ ПРИ ФРИКЦИОННОЙ ПЕРЕМЕШИВАЮЩЕЙ ОБРАБОТКЕ МЕДНОГО СПЛАВА БрАМц9-2

<u>А.М. Черемнов</u>, Т.А. Калашникова, А.В. Чумаевский Научный руководитель: д.т.н. Е.А. Колубаев Институт физики прочности и материаловедения СО РАН, Россия, Томск, пр. Академический, 2/4, г. 634055 E-mail: amc@ispms.ru

REGULARITIES OF STRUCTURE FORMATION AFTER FRICTION STIR PROCESSING OF CuAl9Mn2 COPPER ALLOY

<u>A.M. Cheremnov</u>, T.A. Kalashnikova, A.V. Chumaevskii Scientific Supervisor: doctor of technical sciences E.A. Kolubaev

Institute of Strength Physics and Materials Science of SB RAS, Russia, Tomsk, pr. Akademicheskii.,2/4, 634055 E-mail: <u>amc@ispms.ru</u>

Abstract. In the present study, the surface layer of bronze slab was modified by friction stir processing. After the processing metallography and microhardness of the processed slab sample were examined. Bronze is a material with excellent electrical and thermal conductivity and corrosion resistance, but its mechanical properties are very low. As a result, it was determined that friction stir processing is significantly improves the mechanical properties of bronze.

Введение. Медь обладает высокой электропроводностью, теплопроводностью и обрабатываемостью. Медные сплавы, в частности бронзы, интересны для промышленности за счёт своей устойчивости к агрессивным средам, прочности и пластичности. Различные виды бронз обладают одними из наиболее высоких показателей износостойкости в трибосопряжениях. Благодаря этим достоинствам детали на основе меди и медных сплавов являются широко распространенными материалами для промышленного применения. Но медь с исходно низкими механическими свойствами не может удовлетворить строгие требования к несущей способности, а медные сплавы характерны также своей микропористостью и усадкой, а при добавлении в них большего количества легирующих элементов они становятся более хрупкими [1,2]. Одним из путей устранения таких недостатков является получение покрытий на поверхности медных сплавов с сохранением прочной и пластичной структуры основного металла.

Одним из способов повышать механические свойства поверхностных слоёв различных металлов, в том числе меди и медных сплавов, является фрикционная перемешивающая обработка (ФПО). Схема процесса ФПО представлена на рисунке 1. Процесс обработки локально модифицирует поверхность материала за счёт интенсивной пластической деформации, достигаемой через введение инструмента в поверхность обрабатываемого материала и прохождения инструмента вдоль линии обработки. Инструмент при внедрении и прохождении по поверхности локально нагревает материал ($T \approx 0,6 \div 0,8 T_{плавл}$), размягчает и пластифицирует его с пластической деформацией, что приводит к измельчению зерна. Такая обработка влияет на механические свойства материала, приводя к

формированию ультрамелкодисперсной структуры [3-5]. Одними из наиболее износостойких материалов на основе меди являются алюминиево-марганцевые бронзы, обладающие относительно невысокой стоимостью и хорошими показателями прочности, пластичности и трибологической стойкости. Целью данной работы было рассмотрение изменения структуры в поверхностном слое медного сплава БрАМц9-2 при фрикционной перемешивающей обработке.

Рис. 1. Схема процесса ФПО: а) обрабатываемый металл, б) плечи инструмента), в) пин инструмента, г) зона обработки, д) поперечное сечение обработанного материала

Материалы и методы исследования. В настоящей работе были исследованы образцы из листового проката толщиной 4 мм медного сплава БрАМц9-2, подверженного фрикционной перемешивающей обработке стальным инструментом с винтовым пином. Длина пина – 2,5 мм, количество проходов – 1, скорость вращения инструмента – 500 об/мин, скорость его перемещения – 140 мм/мин, усилие прижима при внедрении – 1400 кг, усилие прижима при сварке – 1100 кг. Металлографические исследования проводились на образцах, вырезанных в перпендикулярном направлению обработки сечении, при помощи оптического микроскопа Альтами МЕТ 1С. Механические свойства образцов определяли на универсальной испытательной машине УТС110-М. Микротвердость образцов определяли на микротвердомере ПМТ-3М.

Результаты. Методом оптической металлографии была выявлена бездефектная структура, которая часто характерна для фрикционной перемешивающей обработки (микроструктура образцов в приведена на Рисунке 2). Размер зёрен в основном металле (ОМ) – 80...140 мкм. Зёрна в зоне перемешивания (ЗП) сильно измельчены, их размер составляет 3...8 мкм, к границе с ЗТМВ увеличиваются до 20 мкм. Также измельчению подверглись зёрна в зоне термомеханического воздействия (ЗТМВ). Размер зёрен в ЗТМВ составляет около 20...45 мкм. Граница между ЗТВ и ОМ чётко не определяема.

На протяжении всей ЗП травление выявило хорошо наблюдаемые отдельные слои в видео потока металла, особо хорошо и в большом количестве выделяемые в нижней части ЗП. Распределение фаз в объеме зоны перемешивания представляется достаточно равномерным, как и в основном металле.

Также были исследованы механические свойства образца медного сплава БрАМц9-2 после проведения фрикционной перемешивающей обработки. Результаты показали значительное повышение микротвёрдости в области обработки по сравнению с областью основного металла. Предел прочности материала зоны перемешивания повысился от 640 до 740 МПа в сравнении с основным металлом. Предел текучести увеличился с 500 до 540 МПа.

Рис. 2. Макро-(а) и микроструктура образца, подвергнутого процессу ФПО, в центральной части ЗП (б) и на границе ЗП, ЗТМВ и ЗТВ (в)

Заключение. Фрикционная перемешивающая обработка бронзовой пластины приводит к улучшению микроструктуры в зоне перемешивания. Происходит снижение размера зёрен по сравнению с основным металлом. Повышается микротвёрдость и прочностные свойства материала преимущественно за счёт механического перемешивания и измельчения зёрен в зоне перемешивания.

Работа выполнена в рамках государственного задания ИФПМ СО РАН, тема номер FWRW-2021-0012.

СПИСОК ЛИТЕРАТУРЫ

- Dinaharan I. et. al. Microstructure and wear characterization of rice husk ash reinforced copper matrix composites prepared using friction stir processing // Journal of Alloys and Compounds – 2017. – V. 718. – pp. 150 – 160.
- Tavares S.S.M. et. al. Microstructure, mechanical properties, and brittle fracture of a cast nickel-aluminum-bronze (NAB) UNS C95800 // Engineering Failure Analysis – 2021. – V. 128. – pp. 105606 – 105624.
- Chumaevskii A.V. et. al. Hardening of Aluminium Alloy 5556 and Copper C11000 Obtained by the Additive Electron-Beam Method with the Following Friction Stir Processing // 2020 7th International Congress on Energy Fluxes and Radiation Effects – 2020. – V. 7. – pp. 1299 – 1303.
- Eliseev A. A. et. al. Material Transfer by Friction Stir Processing // Multiscale Biomechanics and Tribology of Inorganic and Organic Systems – 2021. – pp. 169 – 188.
- 5. Iwaszko J., Kudla K., Friction stir processing of copper // Metal Conference Papers 2019. pp. 1050 1056.

УДК: 669.35:539.214

ЭВОЛЮЦИЯ ЯЧЕИСТОЙ СУБСТРУКТУРЫ С ДЕФОРМАЦИЕЙ В СПЛАВАХ СИ-АL

<u>Н.В. Черкасов</u>, А.Н. Соловьев, Т.В. Черкасова Научный руководитель: профессор, д.ф.-м.н. Л.И. Тришкина Томский государственный архитектурно-строительный университет, Россия, г. Томск, пл. Соляная, 2, 634003 E-mail: <u>cherkasov_2000@list.ru</u>

EVOLUTION OF A CELLULAR SUBSSTRUCTURE WITH DEFORMATION IN CU-AL ALLOYS

<u>V.V. Cherkasov</u>, A.N. Solov'ev, T.V. Cherkasova Scientific Supervisor: Prof., Dr. L.I. Trishkina Tomsk State University of Architecture and Building, Tomsk, Solyanaya Sq., 2, 634003 E-mail: <u>cherkasov 2000@list.ru</u>

Abstract. Qualitative studies of cellular substructure in polycrystalline FCC alloys of Si-Al systems in the process of plastic deformation are carried out. The cellular substructure is formed in alloys with increased packing defect energy. Cellular substructure is understood as a heterogeneous substructure: there are places with an increased density of dislocations (cell walls) and places where there are no dislocations (cell body). Dislocations in this substructure are located in the walls of cells of finite thickness, in which an excess of dislocations of one sign is possible, i.e. the cell walls are formed by polarized dislocations of different signs. Qualitative observation of dislocation types was carried out using an electron microscope. Various parameters were measured from micrographs in the dislocation cellular substructure: the size of the cells (D) and the width (h) of their walls. Measurements of the size of cells and the width of their walls can be carried out by the secant method. The size of the cells D is measured from one wall to the other. The cell wall consists of dislocations of different signs. The main parameter characterizing the strength of the material is the average scalar density of dislocations in the entire volume of the material. The average density of dislocations in the cellular substructure consists of dislocations in the cell walls (ρ_{cw}) and inside them (ρ_{iw}). Experimental studies have shown that the dislocation density increases with an increase in the degree of deformation for all the alloys studied. The paper shows that the dislocation density in the cell walls is higher than in the cell body. The size of the cells decreases with increasing degree of deformation, and increases in the walls of the cells. This is explained by the fact that under the influence of dislocation stress, grains leave the body into the cell walls, which leads to an increase in the width of the cell walls. There are three types of development of cell sizes and the width of their walls during deformation. At the same time, in all three variants, the cell size decreases with deformation. The behavior of the width of the cell walls is as follows: 1) decreases with deformation, 2) does not change, 3) increases with deformation.

Введение. Ячеистая дислокационная субструктура является типичная структурой с дальним порядком в расположении дислокаций, и может формироваться при активной пластической деформации. Ячеистая субструктура [1-5] представляет собой неоднородную субструктуру: дислокации в этой субструктуре располагаются в стенках ячеек конечной толщины, в которых возможен избыток дислокаций одного знака, т.е. стенки ячеек образованы поляризованными дислокациями разных знаков.

Для ячеистой субструктуры характерно, что $\rho_{ct} >> \rho_{HB}$. К типу ячеистых субструктур можно отнести следующие субструктуры [5]: 1) ячеистая неразориентированная, 2) ячеистая разориентированная, 3) ячеисто-сетчатая неразориентированная, 4) ячеисто-сетчатая с разориентировками, 5) блочная, 6) фрагментированная (изотропные и анизотропные фрагменты), 7) субзеренная.

К параметрам дислокационной ячеистой субструктуры относятся размерные характеристики такие как: размер ячеек (\mathcal{A}) и ширина (h) их стенок, плотность дислокаций в стенках ячеек (ρ_{ct}) и внутри них (ρ_{BH}). Для формирования завершенных ячеек нужны, как минимум, дислокации двух систем скольжения [4, 5]. Образование ячеистой субструктуры полностью может реализоваться посредством замыкания стенок ячеек.

Рис.1. Электронно-микроскопические изображения стенок ячеек и ячеистой субструктуры: а – клубки, б – стенка ячейки состоит из одной дислокации, в – стенки ячеек хорошо развиты

Экспериментальная часть. В работе исследовались поликристаллические ГЦК сплавы системы Cu-Al, где концентрация второго элемента – 0,2...5ат.%. Размер зерен 120 мкм. Вид деформации образцы – растяжение. Качественное наблюдение дефектной структуры после различных степеней деформации проводилось в электронных микроскопах «Tesla BS–540». Измерения средней скалярной плотности дислокаций, размера ячеек Д и ширины их стенок h проводилось методом секущей [6].

Результаты. Рассмотрим на качественном уровне формирования ячеистой структуры. Последовательность образования ячеек с ростом степени деформации представлена на рис. 1. При степенях деформации $\varepsilon_{\text{ист}} \sim 0,05$ образуются клубки из дислокаций, которые располагаются в основном по окружности (рис.1 *a*). При росте степени деформации формируются ячейки, стенки которых еще не замкнуты и состоят либо из отдельных дислокаций или из клубков (рис. 1 *б*). Увеличение деформации способствует замыканию стенок ячеек. Дислокаций под действием внешнего напряжения выметаются из тела ячеек и переходят в их стенки, что приводит к увеличению плотности дислокаций в стенках ячеек и это приводит к их расширению (рис. 1 *в*).

Взаимосвязь размера ячеек \mathcal{A} и ширины их стенок *h* от степени деформации для сплавов Cu+0,5aт.% Al, Cu+5aт.% Al показана на рис. 2. Ячеистая ДСС в этих сплавах образуется уже при $\varepsilon_{\text{ист}} = 0,02...0,03$. С развитием деформации размер ячеек убывает, а ширина стенок возрастает. В твердых растворах Cu-Al при заданных концентрациях Al реализуется следующий вариант поведения: \mathcal{A} – уменьшатся, а *h* – увеличивается с деформацией [7].

Одним из параметром, который может определять упрочнение материала, является средняя скалярная плотность дислокаций и она состоит из плотности дислокаций в стенках ячеек и внутри них. Результаты этих измерений параметров от степени деформации представлены на рис. 3. Однородная ранее по объему материала средняя скалярная плотность дислокаций распределяется на две ветви – с возрастанием ρ_{ct} и убыванием ρ_{BH} . Выход зависимостей $\rho_{ct} = f(\varepsilon_{HCT})$ на насыщение означает завершение формирования ячеистой субструктуры.

Рис. 2. Зависимости размера ячеек Д и иирины их стенок h от степени деформации ε_{ucm} : • - сплав Cu+0,5am.% Al, • - Cu+5am.% Al

Рис. 3. Зависимости средней скалярной плотности дислокаций (1), плотности дислокаций в стенках ячеек (2), плотности дислокаций внутри ячеек (3) от степени деформации: а – сплав Cu+0,5am.%Al; б – сплав Cu+5am.%Al

Заключение. Установлено, что с развитием деформации размер ячеек убывает, а ширина их стенок возрастает. Изучено поведение ячеистой ДСС в зависимости от степени деформации: 1) в начале деформации $\varepsilon_{\text{ист}} \sim 0.05$ формируются клубки из дислокаций; 2) повышение деформации $\varepsilon_{\text{ист}} \sim 0.10$ приводит к началу формирования ячейки; 3) после деформации $\varepsilon_{\text{ист}} \sim 0.20$ в структуре образуются разориентировки. В ходе пластической деформации ячеистая ДСС эволюционирует от клубковой до разориентированной ячеистой и микрополосовой.

Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации (тема № FEMN-2020-0004).

СПИСОК ЛИТЕРАТУРЫ

- Тришкина Л. И., Данелия Г. В., Цыпин М. И., Козлов Э. В. Влияние концентрации твёрдого раствора на тип и параметры дислокационной структуры, формирующейся в процессе деформации сплавов// Изв. ВУЗов, Физика. – 1991.– №10. – С.66-70.
- Козлов Э.В., Тришкина Л. И., Конева Н.А. Закономерности развития разориентированной ячеистой субструктуры в медно-алюминиевых и медно-марганцевых сплавах //ФММ. – 1992 – №11. – С.148-152.
- Конева Н.А., Тришкина Л.И., Козлов Э.В. Ячеистая дислокационная субструктура в поликристаллах ГЦК-твердых растворов: количественные характеристики закономерности формирования и роль в упрочнении // Изв. ВУЗов. Физика. – 2011 г. – №8. – С.33-46.
- Kuhlmann-Wilsdorf D., Van Der Merwe J.H Theory of dislocation cell sizes in deformed metals. // Mat.Sci. and Eng. – 1982. – V.55. – P.79-83.
- 5. Конева Н.А., Козлов Э.В., Тришкина Л. И. Классификация дислокационных структур // Металлофизика. – 1991. – V.13. – №10. – С.49-58.
- Конева Н.А., Черкасова Т.В., Тришкина Л.И., Попова Н.А., Громов В.Е., Аксенова К.В. Дислокационная структура и дислокационные субструктуры. Электронно-микроскопические методы измерения их параметров Сиб. гос. индустр. ун-т. – Новокузнецк: Изд. центр СибГИУ, 2019. – 136 с
- Koneva N.A., Starenchenko V.A., Lychagin D.V. et al. Formation of dislocation cell substructure in facecentred cubic metallic solid solutions // Mat. Sci. Eng. A. – 2008. – V. 483-484. – P.179-183.

Россия, Томск, 26-29 апреля 2022 г.

УДК 538.911

МАРТЕНСИТНЫЕ ПРЕВРАЩЕНИЯ ПОРИСТОГО НИКЕЛИДА ТИТАНА, СИНТЕЗИРОВАННОГО В РАЗНЫХ РЕАКЦИОННЫХ СРЕДАХ

<u>А.А. Шишелова</u>, К.М. Дубовиков, А.С. Гарин Научный руководитель: к.ф.-м.н. Е.С. Марченко Национальный исследовательский Томский государственный университет, Россия, г. Томск, пр. Ленина, 36, 634050 E-mail: arina.sh9906@gmail.com

MARTENSITIC TRANSFORMATIONS OF POROUS TITANIUM NICKELIDE SYNTHESIZED IN DIFFERENT REACTION ATMOSPHERE

<u>A.A. Shishelova,</u> K.M. Dubovikov, A.S. Garin Scientific Supervisor: PhD E.S. Marchenko Tomsk State University, Russia, Tomsk, Lenin str., 36, 634050 E-mail: arina.sh9906@gmail.com

Abstract. In this article the influence of gaseous environment of Ar and N on the functional properties and phase composition of porous TiNi alloys was presented. It was shown by DSC and XRD methods that the amount of the brittle phases of impurities like Ti4Ni2O(N,C) increase but don't effect on martensitic transformations. The study of the nature of the shape memory effect on porous TiNi plates showed a difference in the amount of accumulated deformation and the width of the temperature hysteresis in porous alloys obtained in different gas atmospheres.

Введение. Пористый никелид титана и сплавы на его основе является перспективным медицинским материалом для костной пластики благодаря биомеханической совместимости и биоинертности. Известно, что нитриды титана обладают высокими коррозионными свойствами и поэтому широко применяются в качестве коррозионностойких покрытий для титановых имплантатов [1]. Самораспространяющийся высокотемпературный синтез (CBC) интерметаллидов относится к безгазовому горению, так как при рассмотрении макрокинетики реакции синтеза не учитывают влияние газов [2]. Считается, что скорость горения мало зависит от реакционных газов, однако реакционные газы могут влиять на фазовый состав и структуру сплава. Добавка азота в защитную газовую среду, в которой проводят CBC, может повысить долю нитридов титана в поверхностных слоях пористого CBC-TiNi и, таким образом, повысить его коррозионную стойкость. Поэтому целью исследования является влияния газовой среды аргона и среды азота на функциональные свойства и фазовый состав пористого никелида титана.

Экспериментальная часть. Пористые TiNi сплавы были получены методом CBC в режиме послойного горения в проточном реакторе в атмосфере аргона и азота.

Мартенситные превращения исследовали методом дифференциальной сканирующей калориметрии на калориметре DSC 404 F3 с температурного интервала от +250 °C до -150 °C. Скорости нагрева и охлаждения составляли 10 К / мин. Температуры мартенситного превращения определяли по пикам DSC с использованием метода удлинения наклонной линии.

Параметры эффекта памяти формы и интервалы его проявления исследовали на пористых TiNi пластинах 1х9х40 мм измерением удлинения пластины при изменении температуры в условиях одноосного растяжения под постоянной нагрузкой 5 кг в цикле нагрев–охлаждение–нагрев в температурном интервале от +200 °C до -160 °C на установке Instron 68TM-5 с климатической камерой.

Рентгеноструктурный анализ проводили на дифрактометре XRD-6000 Cu Kα-излучении. Для полнопрофильного анализа рентгенограмм использовали программу POWDER CELL 2.4 и базу данных PDF-4+.

На Рис.1, а представлены калориметрические кривые пористых сплавов TiNi-(Ar) и TiNi-(N). Широкий пик на кривой охлаждения соответствует прямому превращению фазы аустенита B2 в фазу мартенсита B19', а широкий пик на кривой нагрева соответствует обратному превращению мартенсита в аустенит. В Таблице 1 перечислены температуры превращения Ms, Mf, As, Af, изменение энтальпии $\Delta H^{M\to A}$, $\Delta H^{A\to M}$, измеренные методом ДСК, и рассчитанные значения энтропии $\Delta S^{M\to A}$, $\Delta S^{A\to M}$ и движущей силы мартенсита $\Delta G^{A\to M}$.

Рис. 1. ДСК-кривые (а) и температурные зависимости накопления и возврата деформации при многократном ЭПФ (б) пористых TiNi-(Ar) и TiNi-(N) сплавов

Таблица 1

Ofmanay	Ms,	Mf,	As,	Af,	$\Delta H^{A \to M}$,	$\Delta H^{M \to A}$,	$\Delta S^{A \to M}$,	$\Delta S^{M \to A}$,	$\Delta G^{A \to M}$,
Образец	°C	°C	°C	°C	Дж/г	Дж/г	Дж/гК	Дж/гК	Дж/г
TiNi-(Ar)	68,7	58,5	89,5	105,1	-12,54	10,95	-0,035	0,030	-0,546
TiNi-(N)	68,8	57,7	88,4	104,9	-11,65	10,67	-0,032	0,029	-0,523

Данные ДСК для пористых TiNi-(Ar) и TiNi-(N)

Значения характеристических температур мартенситного перехода В2↔ В19'для пористых сплавов TiNi-(Ar) и TiNi-(N) в режиме «охлаждение-нагрев» меняются несущественно т.е. в образцах одинаково проходят мартенситные превращения, вызванные изменением температуры (Таблица 1). Это достигается за счет неизменности химического состава матрицы. Ранее разница в механическом поведении двух сплавов TiNi-(Ar) и TiNi-(N) была обнаружена экспериментально при нагружении пластин в режиме циклического трехточечного изгиба [3], поэтому было проведено исследование характера мартенситных превращений пористых пластин под действием нагрузки.

Характерные кривые температурной зависимости накопления и возврата деформации при постоянной нагрузке 5 кг для пористых сплавов TiNi-(Ar) и TiNi-(N) приведены на Рис.1, б. Параметры многократного эффекта памяти формы в пористых TiNi-(Ar) и TiNi-(N) сплавах приведены в Таблице 2.

Таблица 2

	• ·		n 8, C	n , C	2 mar , %	ε _{mox} , %	η, %	∆T, °C
TiNi-(Ar)	70	-158	-22	190	0,9	0,43	52,2	110
TiNi-(N)	70	-160	-28	148	0,51	0,21	59	160

Параметры многократного ЭПФ в пористых сплавах TiNi-(Ar) и TiNi-(N)

* где, $\mathcal{E}_{\max}^{Cooling}$, $\mathcal{E}_{\max}^{Heating}$ - максимальная накопленная деформация при охлаждении и нагреве; η - степень

недовозврата; *ДТ*- температурный гистерезис многократного ЭПФ.

Аустенитная TiNi-фаза в пористых TiNi-(Ar) сплавах в условиях высокой неоднородности при охлаждении, накапливает до 1 % деформации, а в пористых TiNi-(N) сплавах не более 0,5% (Таблица 2). Ширина петли температурного гистерезиса ΔT для TiNi-(N) увеличивается на ~ 50 °C по сравнению с TiNi-(Ar), что связано с ростом диссипативных потерь энергии в процессе мартенситного превращения $B2 \leftrightarrow B19'$.

Анализ рентгеновских спектров образцов показал, что пористые TiNi сплавы имеют схожий фазовый состав с различным соотношением фаз на основе соединений TiNi(B2), TiNi(B19') и смеси фаз $Ti_2Ni+Ti_4Ni_2O(N,C)$. Объемная доля мартенсита TiNi(B19') и вторичных фаз $Ti_2Ni+Ti_4Ni_2O(N,C)$ больше в пористом сплаве TiNi-(N), чем в TiNi-(Ar).

Заключение. В результате проведенных исследований можно сделать следующие выводы:

 При изменении температур в пористых сплавах никелида титана, полученных в разных реакционных средах реализуется обратимый мартенситный переход В2↔ В19'. Синтез в среде азота приводит к увеличению хрупких фаз внедрения Ti₄Ni₂O(N,C), но не влияет на мартенситные превращения.

2. Установлено, что аустенитная фаза TiNi(B2) в пористых сплавах TiNi-(Ar) при охлаждении, накапливает до 1 % деформации, а в пористых сплавах TiNi-(N) не более 0,5%. Увеличение доли фаз $Ti_2Ni+Ti_4Ni_2O(N,C)$ в сплаве TiNi-(N) приводит к росту ширины температурного гистерезиса на 45%.

3. Сделано предположение, что основной вклад в ширину петли гистерезиса вносит пластическая составляющая деформации, вызванная фазовыми неоднородностями в виде вторичных фаз Ti₂Ni и поверхностным слоем Ti₄Ni₂O(N,C). Обнаруженные структурные неоднородности препятствуют движению межфазных мартенситных границ с рассеянием тепловой энергии в результате мартенситного превращения B2↔B19'.

Работа выполнена в рамках проекта Госзадание Минобрнауки России проект № FSWM-2020-0022

СПИСОК ЛИТЕРАТУРЫ

- Starosvetsky D., Gotman I. TiN coating improves the corrosion behavior of superelastic NiTi surgical alloy
 // Surface and Coatings Technology. 2001. V. 148, № 2 3. P. 268 276.
- 2. Амосов А.П., Боровинская И.П., Мержанов А.Г. Порошковая технология самораспространяющегося высокотемпературного синтеза материалов: учеб. пособие. М.: Машиностроение 1, 2007. 567 с.
- Шишелова А. А., Марченко Е. С., Байгонакова Г. А. Сравнительное исследование влияния газовой среды на усталостную прочность и цитосовместимость никелида титана // Тезисы докладов Междунар. конференции Физическая мезомеханика. Материалы с многоуровневой иерархически организованной структурой и интеллектуальные производственные технологии. – Томск, 2021. – С. 336-337.

УДК 536.7; 661.968

ВЫБОР И ОБОСНОВАНИЕ СОСТАВА МАТЕРИАЛА-НАКОПИТЕЛЯ ВОДОРОДА ДЛЯ МЕТАЛЛОГИДРИДНОГО БАЛЛОНА

<u>Р.Р. Эльман</u>, Н. Курдюмов

Научный руководитель: к.т.н. В.Н. Кудияров Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина,30, 634050 E-mail: <u>rre1@tpu.ru</u>

SELECTION AND JUSTIFICATION OF THE HYDROGEN STORAGE MATERIAL COMPOSITION FOR A METAL HYDRIDE TANK

<u>R.R. Elman</u>, N. Kurdymov Scientific Supervisor: Ph.D. V.N. Kudiyarov Tomsk Polytechnic University, Russia, Tomsk, Lenin Ave., 30, 634050 E-mail: <u>rre@tpu.ru</u>

Abstract. The aim of this work is to justify the choice of the high temperature hydrogen storage material composition, which will be used in a metal hydride tank. The focus of the work is on increasing the thermal conductivity of the hydride powder. To achieve this aim, it is necessary to provide a literature review, select material for research and investigate system using simulation software. In this work, we select a hydrogen storage material with an additive that increases the thermal conductivity of the hydride-forming powder mixture. The synthesis parameters were also presented, as well as the results of a thermogravimetric study and differential scanning calorimetry.

Введение. Прогресс в области альтернативной энергетики на основе водорода связан с разработкой способов накопления и хранения водорода. Различают физический и химический методы хранения водорода. К физическим методам относят хранение сжатого водорода в газовых баллонах, трубопроводах и других резервуарах, а также хранение жидкого водорода в криогенных контейнерах. К химическим методам причисляют хранение водорода в различных адсорбционных материалах, абсорбцию в объеме материала и химическое взаимодействие (фуллерены, аммиак, метанол или этанол). Однако у перечисленных способов имеется значительное количество недостатков. К примеру, для хранения водорода в газообразном виде в баллонах характерны такие недостатки, как низкая плотность водорода, высокое рабочее давление, необходимость контроля давления и низкая безопасность. Использование контейнеров и баллонов для хранения сжиженного водорода также характеризуется низким давлением водорода, большими трудозатратами на само сжижение водорода и большими потерями при заправке (до 8 %). Химические формы хранения водорода могут быть использованы лишь один раз, что является серьезнейшим недостатком при рассмотрении таких методов в качестве аккумулятора водорода. Эти недостатки подтолкнули многих инженеров и ученых искать иные способы хранения водорода.

Хорошим методом хранения водорода с точки зрения безопасности и экономической эффективности является накопление водорода в связанном состоянии в виде гидридов металлов. К

современным гидридообразующим материалам, способным аккумулировать значительное количество водорода, относят различные системы на основе редкоземельных металлов, сплавы на основе титана, циркония, магния и др. Гидриды металлов обладают различными свойствами, в зависимости от выбранного материала. Так, LaNi₅ способен поглощать около 1,4 масс.% водорода при комнатной температуре с образованием гидрида LaNi₅H₆, а магний способен поглощать до 7,6 масс. % водорода при температуре около 400 °C. Тем не менее, хранение водорода в гидридообразующих металлах также не лишено недостатков. Редкоземельные металлы обладают высокой стоимостью и ограничены областями их добычи, а системы на основе переходных металлов или магния обладают невыдающейся кинетикой и требуют высоких температур для сорбции и десорбции водорода.

Рассматривая стационарные системы хранения водорода, устанавливаемые в промышленных комплексах с избытками тепла, выгодным решением будет использование дешевых и эффективных высокотемпературных гидридообразующих металлов. Температуру, необходимую лля сорбции/десорбции водорода, можно снизить путем добавления легирующих элементов. Тем не менее, проблемой остается теплопередача в баллоне между частицами реагента. Одним из методов решения данной проблемы является добавление веществ-добавок, повышающих теплопроводность гидридообразующего металла/гидрида. Это позволяет сочетать опции металлогидридного баллона, включающие в себя как применение эффективной геометрии теплообменника, так и высокую теплопроводность самого гидрида. Таким образом, в данной работе производится обоснование выбора материала-накопителя водорода и материала-добавки, повышающей теплопроводность реагента.

Экспериментальная часть. Из всего многообразия гидридообразующих металлов наибольшее внимание привлекают материалы-накопители на основе магния. Магний является одним из наиболее распространенных элементов в земной коре, составляя 2,35 % массы коры. Магний обладает низкой стоимостью, низкой плотностью (1,74 г/см³) и высокой емкостью хранения водорода его гидрида. Исходя из его преимуществ, материалы-накопители водорода на основе магния являются наиболее подходящими для выполнения своей роли. Тем не менее, частицы гидрида магния характеризуются недостаточной теплопроводностью. Для повышения теплопроводности гидридообразующих металлов (в т.ч. магния) рассматривается несколько вариантов. Одним из таких вариантов является применение так называемых компактов – матриц или каркасов, заполненных материалом-накопителем водорода. Перспективным материалом компактов является пенометалл, характеризующийся большой площадью поверхности при небольшом объеме, низкой плотностью и хорошей теплопроводностью (>100 Вт/м²·K⁻¹). Для изготовления пенометаллических конструкций часто используются материалы с высокой теплопроводностью (например, алюминий, медь или цинк). Использование пенометаллов позволяет значительно повысить теплопроводность гидридообразующего металла, однако в таком случае значительно сокращается внутренний объем баллона. Таким образом, количество засыпаемого порошка гидридообразующего металла уменьшается, что негативно сказывается на емкости металлогидридного баллона.

Другим решением проблемы теплопроводности является добавка к материалу-накопителю водорода теплопроводящих веществ. К ним также относятся алюминий, медь и другие металлы, а также графит и углеродные наноматериалы. В таком случае также наблюдается снижение емкости для хранения водорода. Однако, большой интерес вызывают углеродные наноматериалы – углеродные нанотрубки (УНТ) в частности. Помимо решения проблемы теплопроводности, УНТ позволяют повысить скорость

Россия, Томск, 26-29 апреля 2022 г.
сорбции/десорбции, емкость, а также снизить температуру десорбции. Исходя из данных преимуществ, оптимальным материалом для засыпки в металлогидридный баллон является композит MgH₂+УНТ.

Для оценки подобранного материала для засыпки в баллон, при помощи планетарной мельницы АГО-2 был синтезирован композит MgH₂+УНТ. Синтез проводился в атмосфере аргона со скоростью вращения барабанов 300 оборотов в минуту в течение 180 минут. В качестве компонентов полученного материала использовался наводороженный при температуре 400 °C и давлении 30 атм. Н₂ порошок магния МПФ-4 и одностенные углеродные нанотрубки TuballTM. Для гидрида магния и для синтезированного композита MgH₂+УНТ было проведено комплексное исследование с использованием дифференциальной сканирующей калориметрии (ДСК) и термогравиметрического (ТГ) анализа. Результаты представлены на рисунке 1.

Рис. 1. Результаты ТГ и ДСК анализа для гидрида магния (а) и состава MgH₂+УНТ (б)

По результатам дифференциальной сканирующей калориметрии для гидрида магния наблюдается один эндотермический пик, соответствующий выделению водорода из материала. Пиковое значение температуры десорбции из гидрида магния составляет 446 °С при скорости нагрева 6 °С/мин (Рис.1 а). Для состава MgH₂+УНТ наблюдается более низкая температура десорбции водорода, равная 420 °С (Рис.1 б). Кроме того, наблюдаются низкотемпературные колебания, которые, вероятно, обусловлены формированием особой морфологии структуры композита. Результаты ТГ-анализа демонстрируют значительное изменение массы (выход 4,81%) образца гидрида магния в диапазоне, соответствующем температуре начала и конца десорбции водорода. Для композита MgH₂+УНТ наблюдается изменение массы на 1,36% при относительно низкой температуре. Еще одним участком, на котором фиксировалось изменение массы на 2,22%, является промежуток, соответсвующий максимуму интенсивности, при проведении дифференциальной сканирующей калориметрии. наблюдаемому Наличие низкотемпературных максимумов интенсивности выхода водорода, а также смещение основного рефлекса по температурной шкале может говорить о возможности повышения теплопроводности гидрида магния при добавлении к нему УНТ.

Заключение. Был выбран материал-накопитель (Mg/MgH₂) и добавка в виде УНТ. Приведены параметры синтеза смеси MgH₂+УНТ, которая будет использоваться для засыпки в металлогидридный баллон. Также показано влияние УНТ на температуру десорбции водорода из гидрида магния. В дальнейшем будет проведено моделирование баллона с теплообменником и данным материалом в качестве засыпки.

Исследование выполнено при финансовой поддержке при финансовой поддержке РНФ в рамках научного проекта 22-29-01280. Научное издание

ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК

Том 1. Физика

Сборник научных трудов XIX Международной конференции студентов, аспирантов и молодых ученых

Компьютерная верстка С.А. Поробова

Зарегистрировано в Издательстве ТПУ Размещено на корпоративном портале ТПУ в полном соответствии с качеством предоставленного оригинал-макета

